
Survey on Testing Embedded Systems

Árpád Beszédes

†
Tamás Gergely

†
István Papp

‡

Vladimir Marinkovi

‡
Vladimir Zlokolia

‡ ∗

†
Department of Software Engineering, University of Szeged

‡
Faulty of Tehnial Sienes, University of Novi Sad

Abstrat

Embedded systems are widely used in everyday life, thus the qual-

ity assurane of suh systems are important. One of the quality assur-

ane methods is software testing. Di�erent software testing methods have

di�erent appliability in this speial environment of embedded systems,

whih sometimes require spei� solutions for testing. The Department

of Software Engineering, University of Szeged and Faulty of Tehnial

Sienes, University of Novi Sad have started a joint projet whose main

topi is embedded systems software testing. The goal of the projet is the

ombination of white-box and blak-box testing methods to improve the

quality of the tests (and, transitively, the quality of the software) in digital

multimedia environment. The goal of this survey is to overview existing,

doumented solutions for embedded system testing, onentrating on (but

not limited to) the ombination of strutural and funtional tests.

Prefae

The University of Szeged (USZ), University of Novi Sad (UNS) and Vojvodina

ICT Cluster (VOICT) have started a joint projet alled CIRENE. The projet

is �naned by the European Union, and its main goal is to establish a work-

ing ross-border ooperation between the parties. As a proof of onept, the

projet inluded a joint researh and development ativity on embedded sys-

tems testing. The Faulty of Tehnial Sienes on UNS (FTN) has a long-time

experiene in testing of multimedia embedded systems. Their main pro�le is

blak-box testing of digital multimedia devies (digital TVs, set-top-boxes, et.).

The Department of Software Engineering on SZTE (DSE) has been working on

improving testing quality using white-box testing methods. The goal of this

R&D ativity is to exhange knowledge and jointly develop a method or meth-

ods spei� to embedded systems in whih white-box testing methods support

blak-box methods, resulting in an improved quality of the tests implying higher

quality of the produts.

This survey serves as a base of this R&D ativity. The goals of this survey

are

∗
Additional authors of the paper: Gerg® Balogh

†
, Szabols Bognár

†
, Ivan Kastelan

‡
, Jelena

Kovaevi

‡
, Kornél Muhi

†
, Csaba Nagy

†
, Miroslav Popovi

‡
, Róbert Ráz

†
, István Siket

†
,

Péter Varga

†

1

• to searh for previous works that utilizes blak-box or white-box testing

tehniques or their ombination in embedded system environment;

• to evaluate and lassify these works by some de�ned evaluation and las-

si�ation riteria, whih helps seleting those ones that an be a base of

the to be de�ned methodologies of the R&D ativity;

• ompare di�erent works by their appliability and potential in using them

in embedded systems environment.

The paper assesses the state of the art and enumerates a number of possibly ap-

pliable methods and solutions. Later on the projet the general and speialized

methodologies will be reated using this doument as the soure of knowledge.

1 Introdution

In this survey we try to assess the state of the art of embedded systems software

testing. Testing is an important task in software development, and di�erent

irumstanes entitles for di�erent problems and di�erent solutions. Embedded

systems are speial types of systems with speial attributes (e.g. the software

and hardware has more in�uene on eahother and annot be entirely separated),

thus general testing methodologies an only be applied by limitations. This

survey ollets and evaluates a number of existing testing methods and tools

that ould be applied to test embedded systems.

In the rest of this setion some bakground on software testing and embedded

systems testing is given. In Setion 2 we desribe the searh methodology we

applied when assessing the state of the art. In Setion 3 the riteria used to

evaluate and ompare di�erent solutions are given. In Setion 4 the methods,

solutions, and tools that ontribute to embedded systems testing are listed and

evaluated aording to the riteria. In setions 4.1 and 4.2 blak-box and white-

box methods are assessed. In Setion 4.3 methods that ombine blak-box and

white-box elements are desribed and evaluated. In Setion 4.4 some tools that

provides support for the above methods are listed. In Setion 5 a omparison

of the di�erent methods and/or tools is given. Finally, in Setion 6 we draw

onlusions.

1.1 About Testing

Software testing is a very important risk management task of the software de-

velopment projet. With testing, the risk of a residing bug in the software an

be redued, and by reating on the revealed defets, the quality of the software

an be improved. During testing di�erent funtionalities, behavior, or quality

attributes of the software an be heked and assessed.

Tests an be ategorized by many point of view. Using stati testing any

written workprodut (inluding soure ode) of the development proess an

be examined without exeuting the software. Dynami tehniques examine the

software itself by exeuting it. Amongst many, there are two basi types of

dynami test design tehniques: blak-box and white-box tehniques.

2

1.1.1 Blak-box testing

The blak-box test design tehnique onentrates on testing the funtionalities

and requirements of the software without having any knowledge on the struture

of the program. The tehniques take the software as a blak box, examine �what�

the program does and do not intrerested in the �how?� question. The blak-

box tehniques test the software against some spei�ation. The input and

preonditions of the test ases are determined from some spei�ations of the

program, and whether the test ase is exeuted suessfully or not depends on

the similarity between the expeted output and postonditions of the test ase

and the atual output and postonditions of the test ase exeution.

Blak-box Testing is one approah for automated funtional testing in TV

and multimedia tehnology. It ontains both software and hardware omponents

o�ering a wide range of possibilities for testing of integrated DTV systems,

digital satellite and terrestrial reeivers (set-top-box - STB), DVD and blu-ray

players. It an be used for testing of video and audio quality, measurement

of eletrial values harateristi for AV signals, automated navigation through

menus, for providing signal feeds, performing apturing and displaying of video

and audio ontent, for storage of test results in various formats in a �le system

or database, generating test reports, et.

As it is intended for funtional testing, it ignores internal mehanisms of the

system or omponent and fouses spei�ally on the outputs generated as the

system response to spei� inputs and onditions of test exeution.

Exeution of tests an be manual, semi-automati and automati tests, and

tests an be arried out in referene systems (SUT against golden referene sys-

tem) and in systems without a referene devie (omparison against previously

aptured referent AV �les).

In this approah, di�erent types of input devies (generators), one or more

SUTs (System Under Test), and audio/video grabber devies are used. Flexible

onept is needed to expand the funtionality of devies through expansion and

modi�ation of devies parameters and ommands.

For this purpose, available equipment whih user possesses in-house an be

used, suh as: AV signal generators (Fluke, Quantum, AudioPreision, and other

supported devies), aquisition devies (grabber ards), RC (Remote Controller)

emulators (RedRat), instrumentation for eletrial measurements, and power

supplies (Agilent, Hameg, Tektronix, et.).

Software part of Blak Box Testing is a PC based appliation for ontrol,

development and exeution of automated tests. The appliation is installed

on a PC and an be onneted with all the generators through interfaes they

support (RS232, LAN, USB, GPIB, et.). The appliation allows sending of

spei� ommands to adjust parameters of the generated signal. The appliation

an also send ommands to the SUT (over RC emulator, RS-232, LAN, et.)

bringing it into a desired state, required by a test senario (e.g. quality of

image brightness on CVBS input), followed by aquisition of video signal by

the dediated grabber devie. Later on, the test ontinues with analysis of

the aptured SUT output against previously de�ned audio or piture referenes

(�golden referene�), grabbed from the referent devie, using de�ned algorithms

for video or audio quality assessment. Thus, the results of the test are obtained

based on a de�ned limit of deviation of the grabbed sequene ompared to the

referene.

3

Types of testing in Blak Box Testing:

• Manual testing

• Semi-automati testing

• Automated testing

Manual testing requires that all steps of the test are arried out manually by

tester, in aordane with the desription given in the test senario. Appliation

in a step by step manner displays messages with desription of eah step that

needs to be arried out; upon the step exeution the tester resumes the test until

all test steps are aomplished. At the end the appliation prompt window pops

up with a question on the test result, inluding a �eld where the tester an enter

a omment. Evaluation of the results is performed post-run by a professional

based on visual observations. The major di�erenes between semi-automati

and automated testing are that at the former the tester deides on the result

of the testing (like in manual tests) and the system performs automati ontrol

and management of deployed devies, whereas at the latter algorithms built into

test system makes deision on the test results. In the ase of automated tests

the riteria for deision making (PASS, FAIL and others) are set by the test

requirements. The riteria are forwarded to the test management mehanism

built into the ontrol appliation as a parameter used to settle on whether the

test passed or failed. Automated testing of integrated DTV systems presumes

funtional testing of supported interfaes. Devies generating video and audio

ontent intended for testing of eah spei� interfae are onneted to SUT,

whih performs post-proessing of the ontent. After the ations of the prede-

�ned test senario are aomplished the resultant SUT output is grabbed from

the TV motherboard and its ontent is veri�ed against the referene. Using

additional analogue and digital generators RF funtionality test an also be

overed. Control emulators �tted for the spei� DTV produer enables auto-

mati navigation and setting of TV menu options (brightness, olor, sharpness,

volume, et.).

Three di�erent orales:

• Golden referene testing - at this type of testing, referent AV ontent

(golden referene) used to ompare grabbed images and audio against, is

known in advane. Referent AV ontent is usually obtained by reording

of AV output from the referent devie whih had been approved to op-

erate reliably. Another option for reating of referent AV ontent is by

using image and audio editors. Upon the tests' exeution, grabbed �les

are ompared against the referenes from the devie onsidered to be the

referent one, based on whih pass/fail test riteria had been set.

• Golden devie testing - at this type of testing, during the testing itself,

SUT outputs are ompared against outputs from the devie delared as

�golden devie�. AV outputs from both devies are aptured �live� (at test

run time) and ompared by an algorithm whih deides on the test suess

(pass/fail).

4

• Testing without referene - when the testing is performed without a refer-

ent devie or previously reorded referent �les, this tehnique an be used.

It is based on algorithms for image and audio proessing for real time de-

tetion of MPEG like artifats and artifats aused by signal broadast.

Most ommonly deteted artifats are bloking, blurring, ringing, and �eld

loss for video, and signal absene and disontinuities for audio signals.

1.1.2 White-box

The di�erene between white-box testing and blak-box testing is that while

blak-box testing onentrates on the question �What does the program do?�,

and has no information about the struture of the software, white-box testing

examines the �How does the program do that?� question, and tries to exhaus-

tively examine the ode from some aspets. This exhaustive examination is

given by a so-alled overage riterion. The ode gets exeuted during testing

of the program to measure overage.

There are two main types of white-box overage riteria:

• Instrution overage de�nes that program points should be exeuted dur-

ing the tests. What a program point means is dependent on many fators

like granularity (it an be sole instrutions, basi bloks, methods, lasses,

modules, et.).

• Branh overage de�nes how di�erent program paths should be exeuted

or di�erent deisions should be exerised during the tests. Of ourse, it is

dependent on the de�nition of program point: on instrution level we an

examine deisions, or even parts of the deisions (e.g. ondition overage);

while on method level the all graph paths an be examined.

The overage information somehow should be extrated from the test exe-

ution. There are many possibilities to do this:

• Trae generation is an important part of the white box testing. It means

the ode parts that are reahed during the exeution of a test ase. To al-

ulate traeability and overage we need to follow the run of the program.

Instrumentation and debugging an provide this following by inserted feed-

bak points.

• Code instrumentation is inserting instrutions that output some informa-

tion about the interesting points of the exeuted ode. The information

ontent and the interesting points are vary depending on the overage

level and riterion. For example, a simple method overage requires only

a binary �I was exeuted� information at the beginning of eah methods,

while ondition overage requires to output the value of all elementary

ondition of an exeuted deision, and the ode providing this informa-

tion needs to be inserted into all deisions (thus all deision points needs

to be instrumented). This instrumentation an be made in soure ode or

in binary ode.

• Instrumenting the middleware an be a good solution if we use one mid-

dleware for many programs, and we want to get information from all the

5

programs. The middleware lies between the hardware and the operating

system, and it is built up from libraries and drivers. If we insert meth-

ods into this middleware whih send bak information from the exeution,

than we an ollet some kind of information.

• Modifying exeution framework (virtual mahine) by extend the ode of

the framework. This is a software layer between the exeutable binary

ode and the operating systems. It is an environment in whih speial

binary an be exeuted. Speial binary is an intermediate language whih

is typially ompiled from simple soure ode. We an use all trae whih

onsists of information of alled method.

• Debugging an be made in hardware level, and we need to have debug port

in the hardware or a debugger devie, whih an ommuniate with the

hardware in ommon ports. The debugger an read the ode in the hard-

ware and an insert breakpoints into it and an store additional ode or

ontat to other devies whih stores additional ode. When the trap in-

strution is enountered, a software interrupt is generated. The additional

instrumentation ode may then be exeuted. After it, the original instru-

tion ontent is restored. Debuggers provide very detailed information on

the program exeution.

These overage information an be used to manipulate the exeuted test set:

we an selet from the test ases to reah a speial aim, or we an prioritize

them to reah a hosen overage on the ode in a shorter time. Other usage of

the overage information is to alulate other property of the test ases or the

ode.

Traeability is the ability to link produt doumentation requirements bak

to stakeholders' rationales and forward to orresponding design artifats, ode,

and test ases. Traeability an be omputed based on the onnetion between

the funtionalities, the test ases and the overage information.

Reliability provides an estimation of the level of business risk and the like-

lihood of potential appliation failures and defets that the appliation will

experiene when plaed in operation. We an alulate the reliability from the

possible loations of the faults, whih an be asertained from the overage and

traeability information.

1.2 Di�ulties of Embedded Systems Testing

In this setion the most experiened di�ulties in embedded systems testing are

depited.

A primary harateristi of embedded systems is the variety of available

platforms for developers, like the di�erent CPU arhitetures, their vendors,

operating systems and their variants. These systems are not general-purpose

designs, by de�nition. Typially, they are designed for a spei� task, so the

platform is spei�ally hosen to optimize that kind of appliation. Having this,

the onsequenes are more di�ulties for embedded system developers, harder

debugging and testing, sine di�erent debugging tools are required for di�erent

platforms [1℄.

The development of embedded systems is more foused on testing and system

evaluation than desk-top systems. In embedded systems, errors and failing

6

behaviour an stay unnotied for quite a while, only until things like servie

failure or a devie whih is not responding appear in embedded systems. Of

ourse, these errors and failures an be orreted on time, so that no problems in

systems our. In order to ahieve this behaviour, or to at least improve a ertain

systems behaviour, it is neessary to follow through with system monitoring and

to analyze the system post-mortem [48℄.

Embedded systems have beome widely spread and popular, ontrolling a

vast variety of devies. For funtional and error orretness validation of these

systems, the most ommonly used method is software testing. E�etive testing

tehniques ould be helpful in improving dependability of embedded systems,

and therefore developing suh testing tehniques an be a hallenge [60℄.

Embedded systems onsist of software layers. Appliation layers utilize ser-

vies provided by underlying system servie and hardware support layers, while

a typial embedded appliation onsists of multiple user tasks. System failures

in �eld appliations an be aused by two di�erent kinds of interations, those

that our between appliation and lower layers, and those that our between

various user tasks initiated by the appliation layer. In embedded systems, a

partiularly di�ult problem in the testing domain an be the �Orale problem�.

Orale automation is ompliated by the unertain determination of expeted

outputs, for given inputs. This an our due to the multiple tasks whih ould

have a non-deterministi output.

There are many di�erent lasses of real-time embedded systems. For exam-

ple, hard real-time embedded systems have strit temporal requirements, and

inlude safety ritial systems suh as those found in avionis and automotive

systems. Soft real-time embedded systems, in ontrast, our in a wide range

of popular but less safety-ritial systems suh as onsumer eletroni devies,

and tend not to have suh rigorous temporal onstraints.

Sine embedded systems are usually real-time systems as well, its orret-

ness of exeution is not only haraterized by its logial orretness, but by

moment when the result is produed as well, espeially in the ase of hard real-

time systems. Thus, not only when the expeted result is missing, but also

when the expeting result is produed but outside the period de�ned by timing

onstraints, the system is onsidered as failing.

As the failing behaviour is not aeptable for many embedded systems,

spei�ally safety-ritial systems, the testing of meeting timing onstraints is

equally important as testing funtional behaviour of these systems.

Some harateristis of embedded world are making the testing proess of

embedded systems slightly di�erent than testing systems use in other �elds:

• Platforms for exeution and running appliation are usually separately

developed

• Wide spetre of development arhitetures

• Cross-development environments impated by existene of a number of

exeution platforms

• Limited resoures and tight spae for timing onstraints on the platform

• Implementation paradigms an be diametrially di�erent

• Frequently unlear design models

7

• New quality and erti�ation standards

Testability and measurability of an embedded system is often a�eted by

these issues, what is the main reason for testing suh systems to be so di�ult

and thus onsidered as the weakest point of development proess. Having this

in mind, it is natural that more than 50 perent of total development e�ort is

spent in testing embedded systems, espeially the systems whih development is

months behind the expeted shedule, whih is also more than 50 perent [21℄.

Having omplex embedded designs with frequently hanged requirements,

the testing of real-time embedded systems is partiularly di�ult. They usually

require a number of rigorous white-box (strutural) and blak-box (funtional)

testing modules, as well as the integration testing before releasing them to mar-

ket. The funtional testing is usually more important than strutural, and sim-

ilarly, the integration testing is more hallenging task than module testing, and

even more, funtional integration testing requires separate test sripts generated

based on the system requirements [58℄.

2 Searh methodology

To ollet valuable information for this survey paper we searhed for previ-

ous works (papers and tools) onneting blak-box and white-box tehniques

(so alled gray-box testing), or applying suh tehniques in embedded systems

environment.

As a �rst step, we olleted in-house knowledge: reated a list of relevant

papers and tools that had been reviewed or applied in previous researh and

development ativities. Next, Google and Google Sholar searhers were used to

�nd sienti� artiles and ase studies. We started to searh with basi terms as

�graybox�, �gray box�, �gray-box�, �graybox testing�, �graybox proess�, �graybox

testing proess�. Unfortunately, the found artiles showed that these terms are

widely used but note not only those tehniques we are interested in. As a result,

very few relevant papers were found. The next terms we were searhing for

were �whitebox helped blakbox testing� and �whitebox aided blakbox testing�.

These searhes also resulted in a huge number of hits. By �ltering out irrelevant

ones, many papers were left. Unfortunately, after proessing these papers we

had to realize that most of them onentrated on the results of applying suh

methods and not on the elaboration or explanation of the testing proesses they

used.

At this point we narrowed searh by making the searh terms more spei�

to the R&D ativity we wish to perform. As ode overage is deided to be

used in the projet, we started to searh for �overage aided blakbox testing�

and �overage aided testing�. There were muh less hits than with the previous

more general searh terms, but �nally these papers are found to be very relevant

ones.

After trying to �nd omplex papers and solutions that �t to our goals, we

started to ollet relevant information one by one to the following terms: �white-

box testing�, �ode overage�, �instrumentation�, �model-based testing� and �em-

bedded system testing". With these term we found a huge amount of artiles,

papers, reports, tools and ase studies. The �rst seletion were based on the ab-

strats on the papers. The introdution and onlusion setions of the seleted

8

papers were read, and those papers that were not proved to be interesting were

�ltered out.

Later, as the goal of the R&D ativity beame learer, we added �test gener-

ation� as a searh term, whih resulted in works mostly onerning model based

testing, random testing, automative test generation, symboli exeution, and

some proesses that use them.

As testing and debugging are lose to eah other (although they are di�er-

ent ativities, both debugging and white-box testing are based on the program

ode and deals with exeution data), �embedded system debug� terms were also

searhed and a few relevant papers were found.

We also proessed the referene lists of the relevant papers we found. These

referred to artiles usually desribing the basis of some tehniques, or to dif-

ferent tools that utilize the desribed tehnique.

As the last step, tools supporting automati test generation and/or test

exeution are searhed and proessed. Searh terms that were inluded for

this purpose were �automated test generation tool�, �automated test exeution

tool�, and �integrated test generation and test exeution tool�. Large amount

of tools were found using these terms, and later �ltered by seleting some of

them aording to given short desriptions and spei�ations. In order to get

more preise information and to improve assessment of seleted tools, more

detailed douments addressing these tools (e.g. spei�ations, tutorials, et.)

were searhed and proessed.

At the last phase of tools assessment, still missing information of key impor-

tane for later evaluation and omparison of examined existing solutions, were

searhed by ombining terms desribing the information with the tool name.

For some tools, when none of desribed method gave us the information, the

tool was tried out using free (aademi) lienes or versions that are free for

evaluation in the ase they existed.

3 Classi�ation and evaluation riteria

To evaluate and lassify, and espeially to ompare the previous works, we had

to set up some riteria.

At the beginning, we started to evaluate the artiles without any �xed points

of view. After proessing some relevant papers, we ompared their ontent and

tried to list similarities and di�erenes. This list were the base of setting up the

lassi�ation and evaluation riteria.

Classi�ation of methods/evaluation riteria:

input type Gives the input of the evaluated method. It an be a model, the

soure ode, the binary, or various other representations of the system

under test.

output/result Gives the output and/or result of the evaluated method. It an

be a set of new or seleted test ases, prioritization of test ases, overage

information, test exeution results, or many other things, depending on

the type of the method.

programming language This riterion denotes whether the evaluated method

is spei� to some programming languages or language families, or it is

9

general in the means that ould be (even if atually it is not) applied to

any programming languages.

implemented/tool support This indiates whether the method is implem-

ented fully or partially, or there are tools that supports this method.

applied in real environment An important property of a method is whether

it is purely theoretial and works only for �toy� programs/environments, or

it has been applied and its appliability has been proven in real senarios.

spei� to embedded systems Whether the evaluated method is spei� to

embedded systems environment, or it is general and an be e�etively used

not only in embedded systems.

use some overage measure Indiates whether the method uses some kind

of overage values (e.g. ode or funtional overage) as input.

omputes some overage measure Indiates whether the method omputes

some kind of overage values (e.g. ode or funtional overage) as output.

instrumentation tehnique If instrumentation is used in the method, this

point gives the instrumentation tehnique (e.g. soure ode, binary, et.)

requires soure ode Indiates if the method requires the soure ode of the

system under test, or works from some other test basis.

BB testing method(s) This point indiates the general blak-box testing meth-

ods that are speialized in the evaluated solution.

makes prioritization/seletion This indiates whether the method inludes

some test ase prioritization and/or seletion funtionalities, and shows

what kind of seletion / prioritization is used.

prioritization/seletion based on Shows the base measure or data of the

used test ase prioritization/seletion tehniques (e.g. extent of ode ov-

ered, time required for exeution, et.).

4 Assessment

In this setion a detailed assessment of relevant papers and tools an be found.

We separately evaluate blak-box, white-box, and gray-box tehniques and tools.

At the end of the free-format evaluation of a paper, we give the answers to the

lassi�ation and evaluation riterion in a table.

4.1 Blak-box

In this setion papers desribing some blak-box testing methods/ativities are

assessed. The fous is on those tehniques that are more frequently or an more

probably be used in embedded system testing.

10

Graph Transformations for Model-based Testing [13℄

This paper presents an extended heuristi and a generi implementation of

the lassi�ation tree. It uses the lassi�ation-tree transformer (CTT) tool to

aomplish.

The lassi�ation-tree method is an instane of partition testing where the

input domain of the test objet is split up under di�erent aspets, usually orre-

sponding to di�erent input data soures. The di�erent partitions, alled lassi-

�ations, are subdivided into (input data) equivalene lasses. Finally di�erent

ombinations of input data lasses are seleted and arranged into test sequenes.

The CTT tool needs the raw lassi�ation tree (as a model made in Mat-

lab/Simulink/State�ow; raw lassi�ation trees are automatially reated by

the model extrator) as input from the model-based development, and pro-

vide a omplete lassi�ation tree. Then this omplete tree an be used to

generate model-based test senarios by exploration. This extension is a tree-

transformation with lass de�nitions to partition the value spae of input signals.

For this test design step a number of heuristis have been developed whih led

to further automation steps:

• Data type related heuristis: e.g. the lassi�ation of a Boolean signal is

set up by two lasses true and false or enumeration types are lassi�ed by

setting up a lass for eah enumeration value.

• Problem-spei� partitioning heuristis: e.g. there is an interval of a vari-

able's values, but there is a distinguished range of it, and a funtionality

an't be launh if the atual value is out of this range.

• General testing heuristis.

Besides, further tree transformations may be applied for struture re�nement

to simplify the tree. The transformation rules must be olleted in sets to build

up a library of test heuristis whih an provide tree extension rules for spei�

appliation domains or di�erent projets.

This paper mentioned that if we use some proper form of overage we an

generate more sensible inputs for the tests, but did not elaborate on details.

This approah is ommon in the embedded system development.

input type Matlab/Simulink/State�ow model

output/result omplete lassi�ation-tree

programming language PROGRES

implemented/tool support yes, the CTT tool supports it

applied in real environment yes

spei� to embedded systems yes

use some overage measure no

omputes some overagemeasure no

instrumentation tehnique no

requires soure ode no

BB testing method(s) model-based

Makes prioritization/seletion no

Model based software testing [20℄

This artile shows and explains the main streams of the model-based testing.

11

Useful models in software testing:

• Finite-state mahines:

Finite state mahines are appliable to any model that an be aurately

desribed with a �nite number (usually quite small) of spei� states.

A ommon senario: the tester selets an input from a set depending on

the prior results. At any given time, a tester has a spei� set of inputs

to hoose from. This set of inputs varies depending on the exat "state"

of the software. This harateristi of software makes state-based models

a logial �t for software testing.

• State harts:

State harts are spei�ally address modeling of omplex or real-time sys-

tems. They provide a framework for speifying state mahines in a hierar-

hy, where a single state an be �expanded� into another �lower-level� state

mahine. It involves external onditions that a�et whether a transition

takes plae from a partiular state, whih in many situations an redue

the size of the model being reated. State harts are probably easier to

read than �nite state mahines, but they are also nontrivial to work with.

• UML:

The uni�ed modeling language models replae the graphial-style repre-

sentation of state mahines with the power of a strutured language. It

an desribe very ompliated behavior and an also inlude other types

of models within it.

• Markov hains:

Markov hains are stohasti models and they are struturally similar to

�nite state mahines and an be thought of as probabilisti automaton.

Their primary worth is generating tests and also gathering and analyzing

failure data to estimate suh measures as reliability and mean time to

failure.

• Grammars:

Di�erent lasses of grammars are equivalent to di�erent forms of state

mahines. Sometimes, they are muh easier and more ompat represen-

tation for modeling ertain systems suh as parsers. They are generally

easy to write, review, and maintain.

• Other: see in [16℄

It gives proper terminology and examples, make a review of the MBT's

role. It's aim to give an approah to the reader about the model-based testing

methods and its funtionality.

This paper not deals with overage riteria, but tells some form of overage

that an be reahed by MBT. The methodology not needs the soure ode to

work. It needs only some kind of model. It an be applied widely in software

development.

12

input type some kind of model

output/result usually test ases, senarios

programming language none

implemented/tool support many tools supports

applied in real environment yes

spei� to embedded systems no, but also used there

use some overage measure not ommon

omputes some overagemeasure model, path overage

instrumentation tehnique no

requires soure ode no

BB testing method(s) model-based, sometimes with random

inputs

Makes prioritization/seletion no

MaTeLo: Automated Testing Suite for Software Validation [29℄

This paper presents the MaTeLo software, a model-based funtional testing

devie, and its advantages, options and objetives. The developers not meant to

make a devie that fully tests a system, but to test a system to make it usable

in the future without defets.

This devie ontaining the follow issues:

• seleting relevant test ases:

MaTeLo is generating the Test Suite from the Usage Model. The Test

Suite an be analyzed by the MaTeLo system with a report generation, in

order to generate a relevant Test Suite.

• giving the aeptane riteria of the testing and de�nition of a test stop-

ping riteria:

MaTeLo supports projet manager to manage the test ampaign. He will

use the report's funtions of MaTeLo to foresee the end of the projet

and so the delivery date of the system for ustomers. For tests, MaTeLo

stores the model and omputes some overage riteria to give the satisfying

onditions.

• helping the di�erent development strategies:

The industry is heightened at di�erent stages regarding testing, and the

MaTeLo projet is ommitted to promote the use of statistial tools &

methods to answer European industries' needs.

• test automation:

MaTeLo provide support to build the software test plan and generate the

usage model, than generate the test suite from it. MaTeLo provides the

apability of automati exeution of test suite and stores test results in a

database to allow further analysis.

It uses Markov-hains to generate test ases, beause these give the proper

user behavior models. The states of the Markov-hain represents the states of

the system and the transitions in the Markov-hain refers to the user ations,

so the state-hanges in the system.

13

The MaTeLo ontains many options to enhane model-based funtional test-

ing. It an provide the usage model from the spei�ation, generate test ases

from it in TTCN-3 or textual formats, and alulate overage on spei�ation

and model level.

input type some kind of model

output/result test ases, senarios

programming language TTCN-3

implemented/tool support it is a tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure spei�ation, ar and state

instrumentation tehnique no

requires soure ode yes

BB testing method(s) Markov-model-based

Makes prioritization/seletion an make seletion

Automati test ase generation from requirements spei�ations for

real-time embedded systems [15℄

In this paper, the authors present a method to generate test ases, using

the requirements spei�ations for event-oriented, real-time embedded systems.

The requirements doumentation and test ase generation ativities make up

the initial steps in their method to realize model-based odesign. This ode-

sign method relies on system models at inreasing levels of �delity in order to

explore design alternatives and to evaluate the orretness of these designs. As

a result, the tests that we desire should over all system requirements in order

to determine if all requirements have been implemented in the design. The set

of generated tests will then be maintained and applied to system models of in-

reasing �delity and to the system prototype in order to verify the onsisteny

between models and physial realizations.

In this odesign method, test ases are used to validate system models and

prototypes against the requirements spei�ation. This ensures oherene be-

tween the system models at various levels of detail, the system prototype, and

the �nal system design. Automating the test ase generation proess provides a

means to ensure that the test ases have been derived in a onsistent and obje-

tive manner and that all system requirements have been overed. The goal is to

generate a suite of test ases that provide omplete overage of all doumented

system requirements.

The paper ontains a simple example of a ontroller for a safety injetor of

a reator ore. The system monitors pressure and adds oolant if the pressure

drops below a given threshold.

The di�ulty of this problem has been disussed in this paper and a heuristi

algorithm is presented to solve the problem.

14

input type requirements spei�ation

output/result test suite

programming language C

implemented/tool support yes

applied in real environment no

spei� to embedded systems yes

use some overage measure yes

omputes some overagemeasure no

instrumentation tehnique -

requires soure ode yes

BB testing method(s) spei�ation based

Makes prioritization/seletion an make seletion

Prioritization/seletion based on spei�ation

Automati test generation: a use ase driven approah [45℄

The authors propose a new approah for automating the generation of sys-

tem test senarios from use ases in the ontext of objet-oriented embedded

software and taking into aount traeability problems between high-level views

and onrete test ase exeution. The method they develop is based on a use

ase model unraveling the many ambiguities of the requirements written in nat-

ural language. They build on UML use ases enhaned with ontrats (based on

use ases pre- and postonditions). The test objetives (paths) generation from

the use ases onstitutes the �rst phase of their approah. The seond phase

aims at generating test senarios from these test objetives. The test ases are

generated in two steps: Use ase orderings are dedued from use ase ontrats;

and then use ase senarios are substituted for eah use ase to produe test

ases. While in the �rst step the use ases model handles high level onerns,

in the seond step, the data omplexity (numerial data, objet models, OCL

onstraints, et.) is taken into aount with the use of use ase senarios. The

approah has been evaluated in three ase studies by estimating the quality of

the test ases generated by their prototype tools.

input type UML use ases

output/result test suite

programming language C++

implemented/tool support implemented, but no tool

applied in real environment yes

spei� to embedded systems yes

use some overage measure use ase overage

omputes some overagemeasure -

instrumentation tehnique -

requires soure ode (yes/no) no

BB testing method(s) model-based

Makes prioritization/seletion -

Prioritization/seletion based on -

A Test Generation Method Based On State Diagram [39℄

This paper aims to resolve the following researh issues:

15

• minimize size of test ases and test data derived from extended state hart

diagram,

• maximize a number of nodes overage, and

• minimize total time of test ase generation from diagrams.

The paper proposes an e�etive method to prepare and generate both of test

ases and test data, alled TGfMMD method. The TGfMMD method is devel-

oped to verify the state hart diagram before generation and generate both of

test ases and test data from extended state hart diagram. The extended state

diagrams is a Mealy Mahine diagram. The Mealy Mahine diagram is extended

from the UML state diagram. Both of these diagrams are used to desribe the

behavior of systems but di�er in the sense of Mealy Mahine diagram has input

and output while normal state diagram does not have.

input type state diagram

output/result test ases

programming language -

implemented/tool support TGfMMD

applied in real environment no

spei� to embedded systems no

use some overage measure state diagram overage

omputes some overagemeasure diagram

instrumentation tehnique no

requires soure ode no

BB testing method(s) method based

Makes prioritization/seletion seletion

Prioritization/seletion based on state diagram overage

A Pratial Approah for Automated Test Case Generation using

Stateharts [52℄

This paper presents an approah for automated test ase generation using a

software spei�ation modeled in Stateharts. The steps de�ned in this approah

involve: translation of Stateharts modeling into an XML-based language and

the PerformCharts tool generates FSMs based on ontrol �ow. Stateharts ex-

tend state-transition diagrams with notions of hierarhy (depth), orthogonality

(parallel ativities) and interdependene/synhronization (broadast ommuni-

ation). Stateharts onsist of states, onditions, events, ations and transitions.

These FSMs are the inputs for the Condado tool whih generates test ases.

A ase study was on an implementation of a protool spei�ed for ommuni-

ation between a sienti� experiment and the On-Board Data Handling Com-

puter of a satellite under development at National Institute for Spae Researh

(INPE). The approah was applied on a simulated version of a satellite experi-

ment software. The results were satisfatory.

16

input type Statehart

output/result test ases

programming language C++

implemented/tool support implemented, but no tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure no

instrumentation tehnique no

requires soure ode no

BB testing method(s) -

Makes prioritization/seletion -

Prioritization/seletion based on -

Testing Conurrent Objet-Oriented Systems with Spe Explorer [9℄

The basis of the SpeExplorer is the interfae automaton [3℄, whih separates

the input and the output edges in the nodes and uses FIFO struture to explore

the input model. SpeExplorer disovers the spei�ation (high-level or soure

ode) to build the interfae model and than explores it to build the model whih

will be the basis of the test ase generation. SpeExplorer an reate not only

�x senarios but dynami or in�nite ones as well (e.g. hat servers) and an

hoose series of method alls whih do not violate the system's operation and

whih are relevant for the users' test inputs.

It uses the next two methods for simplify the in�nitive systems:

• grouping statuses: merge the statuses whih are indistinguishable in a user

de�ne aspet;

• state-dependent parameter generating: de�nes parameter-intervals whih

an help us to selet the proper input values.

The result graphs an use as orales. To solve the branhes SpeExplorer

use Markov-deision logi. With this, it an provide a good path and model

overage.

input type spei�ation or model

output/result test senarios or a graph

programming language C#, .NET

implemented/tool support Visual Studio 2010 Ultimate and above,

SpeExplorer

applied in real environment yes

spei� to embedded systems no

use some overage measure behavioral, branh

omputes some overagemeasure ode

instrumentation tehnique .NET assembly level, binary inst.

requires soure ode yes

BB testing method(s) Markov-model-based

Makes prioritization/seletion an make both

Prioritization/seletion based on some user-de�ned aspet

17

Unit Tests Reloaded: Parameterized Unit Testing with Symboli Ex-

eution [53℄

We an �nd proper inputs for parametrized unit tests (PUTs) during sym-

boli exeution thus we an reah high model overage and in some ase we an

look this PUTs as spei�ation. During symboli exeution we explore the sym-

boli variables and develop them with proper values. The symboli variables

are mathematial strutures that ontains every variable from above in the path

whih the symboli variable depends on.

PUTs an be provided from existing unit test or we an write brand news

from the implementation.

In this paper these tools mentioned as providing symboli exeution:

• Java PathFinder with some extensions,

• .NET XRT.

The next two devie was developed by Mirosoft Researh for automati

unit test generation: UnitMeister and AxiomMeister. These devies an make

new PUTs from implementation, parametrize existing UTs and refator existing

PUTs. The symboli variables are expressions over the input symbols. The

symboli exeution builds up a dependeny path between the variables thus it

an ompute the values for all the variables by hoosing the proper input values.

these dependeny paths an ontain juntions (so we all them trees more than

paths) and the tree-exploration or tree-exeution makes as muh UTs as the

number of the branhes.

We an speify the minimal number of test senarios by de�ne the proper

inputs so these senarios an over all the paths. A path is inappropriate if we

an't �nd input for it. For example it will newer be hosen or in the branh

the value is always false, et. In this ase we an drop this branh even from

the system. The symboli exeution unfolds all the loops and reursions, so

it an provide in�nite number of paths. For prevent this, we an use several

tehniques. One of these is if we an give a number for limitation for running

the loops by analyzing the behavior of the loops and gives a maximum number

of the exeution of the loop. We an use mok objets for imitate the behavior

and funtions of the software omponents. Though the mok objets ontains

only a slie of the funtionalities, if we an generate these automatially, we an

have unlimited number of mok objets, eah with di�erent funtionality.

For this ase the symboli mok objets are the best hoies. In these objets

the funtionalities are spei�ed like the values of the symboli variables (in de-

pendeny trees). We an represent eah proedure alls result by mok objets.

18

input type any kind of unittests or implementation

output/result Parametrized Unit tests

programming language Java, .NET

implemented/tool support PathFinder, XRT, UnitMeister, Ax-

iomMeister

applied in real environment yes

spei� to embedded systems no

use some overage measure input overage

omputes some overagemeasure model, path overage

instrumentation tehnique no

requires soure ode an use the soure ode also

BB testing method(s) BB, GB

Makes prioritization/seletion BB, GB

Prioritization/seletion based on BB, GB

Feedbak-direted Random Test Generation [47℄

This paper presents a tehnique that improves random test generation by

inorporating feedbak obtained from exeuting test inputs as they are on-

struted. Build inputs inrementally by randomly seleting a method all to

apply and �nding arguments from among previously-onstruted inputs. As

soon as an input is built, it is exeuted and heked against a set of ontrats

and �lters. The result of the exeution determines whether the input is redun-

dant, illegal, ontrat-violating, or useful for generating more inputs. Inputs

that reate redundant or illegal states are never extended into tests ontaining

more steps. The tehnique outputs a test suite onsisting of unit tests for the

lasses under test in objet-oriented systems. This tehnique is implemented

in RANDOOP, whih is a fully automati system, requires no input from the

user (other than the name of a binary for .NET or a lass diretory for Java),

and sales to realisti appliations with hundreds of lasses. It an be e�iently

used in the sparse and global sampling. Inputs reated with feedbak-direted

random generation ahieve equal or higher blok and prediate overage than

the systemati tehniques. Feedbak-direted random testing does not require

a speialized virtual mahine, ode instrumentation, or the use of onstraint

solvers or theorem provers.

The basis if this tehnique is that an objet-oriented unit test onsists of

a sequene of method alls that set up state (suh as reating and mutating

objets), and an assertion about the result of the �nal all. Eah method have

input arguments, whih an be primitive values or referene values returned by

previous method alls. The feedbak-direted random test generation tehnique

hooses a method randomly from the method list and generating inputs for it.

When the input is generated, the method is exeuted and measured. If the

result violates any onstraint, the methods is dropped. If not, a new method

is hosen from the available set. This set is made up from the methods that

are reahable after the run of the previous one. The tehnique is iterating these

steps until the program is terminating. The result is a test sequene from valid

method alls and the proper inputs. As soon as a (sub)sequene is built, it is

exeuted to ensure that it reates non-redundant and legal objets, as spei�ed

by �lters and ontrats.

RANDOOP takes all these steps automatially and makes a omplete test

19

suite of one library by one run.

input type model or soure ode

output/result test suite+inputs

programming language .NET, Java

implemented/tool support RANDOOP

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure method

instrumentation tehnique none

requires soure ode yes

BB testing method(s) random

Makes prioritization/seletion no

Path Oriented Random Testing [28℄

Test ampaigns usually require only a restrited subset of paths in a program

to be thoroughly tested, so we fae the problem of building a sequene of random

test data that exeute only a subset of paths in a program based on bakward

symboli exeution and onstraint propagation to generate random test data

based on an uniform distribution.

Usual white-box testing approahes require only a subset of paths to be seleted

to over all statements, all deisions or other strutural riteria.

There are also paths whih never will be hosen during the programs operation.

Our approah derives path onditions and omputes an over-approximation

of their assoiated sub-domain to �nd suh a uniform sequene. One key advan-

tage of Random Testing over other tehniques is that it selets objetively the

test data by ignoring the spei�ation or the struture of the Program Under

Test. Path testing requires to �nd a test suite so that every ontrol �ow path is

traversed at least one. As every feasible path orresponds to a sub-domain of

the input domain, path testing onsists in seleting at least one test datum from

eah sub-domain with minimalizing the numbers of rejets in seleted inputs. A

rejet is produed whenever the randomly generated test datum does not satisfy

the path onditions.

This paper presents and explains the symboli exeution, the onstraint

programing, and gives some example algorithms how to alulate path ondition

and how to generate path-oriented random test data.

20

input type ontrol �ow

output/result test suite

programming language SICStus Prolog, C

implemented/tool support implemented, but no tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure path overage

instrumentation tehnique no

requires soure ode no

BB testing method(s) model-based, random input

Makes prioritization/seletion no

Adaptive Random Testing [10℄

Adaptive random testing seeks to distribute test ases more evenly within

the input spae. It is based on the intuition that for non-point types of failure

patterns, an even spread of test ases is more likely to detet failures using fewer

test ases than ordinary random testing.

In reent studies, it has been found that the performane of a partition test-

ing strategy depends not only on the failure rate, but also on the geometri

pattern of the failure-ausing inputs. This has prompted the authors of this ar-

tile to investigate whether the performane of random testing an be improved

by taking the patterns of failure-ausing inputs into onsiderati.

This study assumes that the random seletion of test ases is based on a

uniform distribution and without replaement. Elements of an input domain

are known as failure-ausing inputs, if they produe inorret outputs. We use

the expeted number of test ases required to detet the �rst failure (referred

to as the F-measure), as the e�etiveness metri. The lower the F-measure the

more e�etive the testing strategy beause fewer test ases are required to reveal

the �rst failure. The patterns of failure-ausing inputs have lassi�ed into three

ategories: point, strip and blok patterns. It onjetures that test ases should

be as evenly spread over the entire input domain as possible.

Adaptive random testing makes use of two sets of test ases, namely the

exeuted set and the andidate set whih are disjoint. The exeuted set is

the set of distint test ases that have been exeuted but without revealing

any failure; while the andidate set is a set of test ases that are randomly

seleted without replaement. The exeuted set is initially empty and the �rst

test ase is randomly hosen from the input domain. The exeuted set is then

inrementally updated with the seleted element from the andidate set until

a failure is revealed. From the andidate set, an element that is farthest away

(Eulidean distane) from all exeuted test ases, is seleted as the next test

ase. There are also various ways to onstrut the andidate set.

The authors make an experiment with many kind of open soure programs

in variety of programming languages but all programs have onverted into C++.

The artile gives an example algorithm to show how to generate a andidate

set and selet a test ases.

21

input type input domain

output/result test inputs

programming language C++

implemented/tool support it is implemented, but have no tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure no

instrumentation tehnique no

requires soure ode no

BB testing method random

Makes prioritization/seletion no

4.2 White-box

In this setion, papers that desribe methods helping to extrat some white-box

overage measures are assessed.

Observability analysis of embedded software for Coverage-Direted

validation [14℄

In this paper the authors propose a new metri that gives a measure of the

instrution overage in the software portion of the embedded system. Their

metri is based on observability, rather than on ontrollability. Given a set of

input vetors, their metri indiates the instrutions that had no e�et on the

output.

The overage metri being proposed was implemented to handle programs

in the C language. The algorithm was implemented in a two step proess. In

the �rst step they transform the soure program by adding for eah statement

a all to a funtion. The parser used was 2 whih is a publi-domain software

program. 2 works by making an Abstrat Syntax Tree (AST) of a C program.

The AST an then be manipulated in several ways suh as adding or deleting

nodes in it. Finally, after hanging the AST, the 2 tool produes the C

program for that new AST.

In their ase, the modi�ations made are, for eah statement, adding one

of several funtions to the ode. Several funtions will proess the information

extrated from the statement.

Then, in the seond step they ompile the transformed program inside a

framework that will allow several input vetors to be run and obtain an overall

estimate of the observability overage for these vetors. They show four exam-

ples they used to test the observability based metri being proposed. One of

the program omputes Fibonai numbers, one mathes a stream of haraters

against a string, one omputes the Hu�man ode and the last one implements

the Fast Fourier Transform (FFT). All four were implemented using the C lan-

guage.

This metri has great potential to be used in embedded software testing.

There is signi�ant overhead due to the fat that for eah statement, a funtion

all is made.

22

input type soure ode

output/result perentage of observed statements

programming language C/C++

implemented/tool support implemented, but no tool

applied in real environment yes

spei� to embedded systems no

use some overage measure statement overage

omputes some overagemeasure statement overage

instrumentation tehnique ode instrumentation

requires soure ode yes

BB testing method(s) -

Makes prioritization/seletion -

Prioritization/seletion based on -

Flow logi: a multi-paradigmati approah to stati analysis [46℄

The �ow logi is a formalism of stati analysis. It separates when and how:

when an estimation of an analysis is aeptable and how to make the analysis.

It is based in partiular on the onventional use-ase analysis, border analysis

and abstrat interpretation. De�nitions in di�erent levels an be spei�ed by

the same formalism. It allows us to use the onventional tehniques in stati

analysis. This is the basis of using di�erent paradigms in di�erent parts of the

system aording to what paradigm gives the best solution.

The spei�ations of the �ow logi are sets of loses. It is neessary to write

these loses o-indutively. An estimation of an analysis is aeptable if not

violates any of the onditions set by the spei�ation. We an reah a good

spei�ation overage, if selets these kind of analysis.

There are two approahes of the �ow logi:

• abstrat vs. omplex,

• suint vs. verbose.

The omplex spei�ation is syntax-driven, similar to the implementation,

while the abstrat spei�ation is lose to the ommon semantis. The verbose

spei�ation reports all the inner �ow information like the use-ase and the

boarder analysis, while the suint spei�ation deals only with the top level

estimation of an analysis.

input type soure ode, implementation, interfae

output/result sets of loses

programming language none

implemented/tool support no

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure spei�ation

instrumentation tehnique no

requires soure ode yes

BB testing method(s) use-ase analysis, border analysis, ab-

strat interpretation

Makes prioritization/seletion no

23

Boundary Coverage Criteria for Test Generation from Formal Mod-

els [40℄

This artile presents a new area of the model-based overage riteria, whih is

based on the formalism of the boundary-testing heuristis. It an be applied in

every system working with variables and values. It feasible to measure overage

or to generate test ases. It is implemented in the B-Z-TESTING-TOOLS tool

suite, whih is able to generate test ases from B, Z or UML/OCL model.

They tried and suggested a number of overage metri in the early develop-

ment:

• Transition overage or transition-pair overage for transitions represented

in state-hart;

• Constraint overage for abstrat state mahines' behavior-de�ning on-

straints;

• Disjuntive Normal Form overage for states in state-based models, like

B, Z, VDM, where prediates provides the behavior.

Besides, there are di�erent analyzing methods to provide the basis for test

generating algorithms, but they aren't used as overage metris. One from these

is the boundary-analysis. The boundary overage is independent from the stru-

ture, so it an be an extension for it. It's suitable for seleting or extending the

test ases generated from strutural overage. This BZ-TT tool suite have spe-

ial possibilities to e�iently implement the boundary value omputing method,

and it is ommonly used for smart ards and in transport systems. The formal

model used by the BZ-TT is assembled from variables and prediates and an

be reated from any kind of formal spei�ation.

This artile gives a formal de�nition for the boundary values, the boundary

overage, and a test seletion algorithm, and gives a partiular formal example.

input type formal model

output/result boundary overage value

programming language B, Z, VDM, UML/OCL

implemented/tool support implemented in BZ-TESTING-TOOLS

applied in real environment yes

spei� to embedded systems partly

use some overage measure no

omputes some overagemeasure boundary

instrumentation tehnique no

requires soure ode no

BB testing method(s) no

makes prioritization/seletion an make seletion

Prioritization/seletion based on boundary overage

A Dynami Binary Instrumentation Engine for the ARM Arhite-

ture [31℄

Dynami binary instrumentation (DBI) is a powerful tehnique for analyz-

ing the runtime behavior of software. There are numerous DBI frameworks for

general-purpose arhitetures, but for embedded arhitetures are fairly limited.

24

This paper desribes the design, implementation, and appliations of the ARM

version of Pin.

ARM is an aronym for Advaned RISC Mahines. Most implementations

of the ARM arhiteture fous on providing a proessor that meets the power

and performane requirements of the embedded systems ommunity.

Pin is a dynami binary rewriting system developed by Intel. It allows a

tool to insert funtion alls at any point in the program and automatially

saves and restores registers so the inserted all does not overwrite appliation

registers. At the highest level, Pin onsists of a virtual mahine (VM), a ode

ahe, and an instrumentation API invoked by Pintools. The VM onsists of a

just-in-time ompiler (JIT), an emulator, and a dispather. The JIT ompiles

and instruments appliation ode, whih is then launhed by the dispather.

Sine Pin sits above the operating system, it an only apture user-level ode.

It uses a ode ahe to store previously instrumented opies of the appliation

to amortize its overhead. Code traes are used as the basis for instrumentation

and ode ahing.

Pin provides transpareny to any appliation running under its ontrol. All

memory and register values, inluding the PC, will appear to the appliation as

they would had the appliation been run diretly on the hardware.

To ensure that the VMmaintains ontrol of exeution at all times, and ontrol

never esapes bak to the original, not instrumented ode, all branhes within

the ahed ode are pathed and redireted to their transformed targets within

the ode ahe.

From an ISA standpoint, system alls do not present any partiular problem

in Pin for ARM, sine they an be exeuted diretly without further intervention

from Pin. However, in order to stay in ontrol of the appliation under all

irumstanes, some system alls must be interepted and emulated instead.

Superbloks (single-entry, multiple-exit regions) are used as the basis for

instrumentation and ode ahing in Pin. Just before the �rst exeution of a

basi blok, Pin speulatively reates a straight-line trae of instrutions that

is terminated by either an unonditional branh, or an instrution ount limit.

One ARM-spei� trae seletion optimization we explored was to limit trae

lengths to a �xed maximum number of basi bloks. This optimization redues

the tail dupliation resulting from ahing superbloks.

A major hallenge in many dynami instrumentation systems is self-modifying

ode (SMC). Any time an appliation modi�es its own ode region, the instru-

mentation system must be aware of this hange in order to invalidate, regenerate,

and re-instrument its ahed opy of the modi�ed ode. The real problem is the

e�ient detetion. Fortunately, arhitetures suh as ARM ontains an expliit

instrution that must be used by the software developer in order to orretly

implement SMC.

After these, the artile shows a performane analysis to Pin for ARM. Finally

it lists out the potential appliations.

25

input type embedded system

output/result instrumented system

programming language C

implemented/tool support implemented in Pin for ARM

applied in real environment yes

spei� to embedded systems yes

use some overage measure no

omputes some overagemeasure no

instrumentation tehnique binary

requires soure ode no

BB testing method(s) none

Makes prioritization/seletion no

Automated Formal Veri�ation and Testing of C Programs for Em-

bedded Systems [36℄

This paper introdues an approah for automated veri�ation and testing of

ANSI C programs for embedded systems. Automatially extrat an automaton

model from the C ode of the system under test. This automaton model is used

for formal veri�ation of the requirements de�ned in the system spei�ation,

and we an derive test ases from this model by using a model heker, too. This

paper spei�ally shows how to deal with arithmeti expressions in the model

heker NuSMV and how to preserve the numerial results in ase of modeling

the platform-spei� semantis of C.

In this paper the veri�ation of the SUT is realized in two important inde-

pendent steps:

• In the �rst step the platform-independent semantis of the system an be

veri�ed formally by model heking. By verifying all requirements from

the spei�ation, it an be shown that the C program onforms to the

spei�ation. Veri�ations are done with X-in-the-loop method.

• The seond step is testing the system by exeution of test ases on the

target platform. It proves whether the platform-spei� semantis of the

program has the same behavior as the model. Test ases are generated by

model heking from the automaton model.

Every step is done in Matlab Simulink.

The model extration is done in the following steps: (1) The C-soure ode

is parsed and by stati analysis, the syntax tree of the program is generated.

(2) The syntax tree is used to generate the automaton model by sequentially

proessing it and interpreting the semantis of the basi statements. (3) The

desription of the automaton model is given in an automata language.

For the formal veri�ation of the system the properties from the spei�ation

have to be translated into temporal logi formulas. These formulas an be veri-

�ed on the model with a model heker. Some properties from the spei�ation

are suitable to be heked diretly on the extrated model.

For the test ase generation we also use model heking tehniques. The

main purpose of a model heker is to verify a formal property on a system

model. In ase that the formal property is invalid on a given model, a model

heker provides a ounterexample, whih desribes a onrete path on whih

26

the property is violated. This feature of a model heker an be used to generate

test ases in a formal and systemati way. For �nding suitable test ases the

hallenge is to �nd appropriate properties (trap properties), that yield spei�

paths that an be used as test ases.

input type spei�ation

output/result test ases and veri�ation information

programming language C

implemented/tool support NuSMV

applied in real environment yes

spei� to embedded systems yes

use some overage measure no

omputes some overagemeasure no

instrumentation tehnique none

requires soure ode no

BB testing method(s) model heking

Makes prioritization/seletion no

Using Property-Based Orales when Testing Embedded System Ap-

pliations [61℄

As prior work in this paper an approah for testing embedded systems is

presented, fousing on embedded system appliations and the tasks that om-

prise them. This artile fouses on a seond but equally important aspet of

the need to provide observability of embedded system behavior su�ient to al-

low engineers to detet failures. It presents several property-based orales that

an be instantiated in embedded systems through program analysis and instru-

mentation, and an detet failures for whih simple output-based orales are

inadequate.

The authors presented an approah in this paper to help developers of em-

bedded system appliations detet faults that our as their appliations interat

with underlying system omponents. This approah involves two data�ow-based

test adequay riteria. First, we use data�ow analysis to identify inter-layer

interations between appliation ode and lower-level (kernel and hardware-

related) omponents in embedded systems. Seond, we use a further data�ow

analysis to identify inter-task interations between tasks that are initiated by the

appliation. Appliation developers then reate and exeute test ases targeting

these interations.

The �orale problem� is a hallenging problem in many testing domains,

but with embedded systems it an be partiularly di�ult. Embedded sys-

tems employing multiple tasks that an have non-deterministi outputs, whih

ompliates the determination of expeted outputs for given inputs. Faults in

embedded systems an produe e�ets on program behavior or state whih, in

the ontext of partiular test exeutions, do not propagate to output, but do

surfae later in the �eld. Thus, orales that are stritly �output-based�, may

fail to detet faults. So several �property-based� orales are presented that use

instrumentation to reord various aspets of exeution behavior and ompare

observed behavior to ertain intended system properties that an be derived

through program analysis. These an be used during testing to help engineers

27

observe spei� system behaviors that reveal the presene of faults.

input type program and test suit

output/result test results

programming language C, Java

implemented/tool support no

applied in real environment yes

spei� to embedded systems yes

use some overage measure trae

omputes some overagemeasure trae

instrumentation tehnique soure ode, OS, libraries, runtime sys-

tems

requires soure ode yes

BB testing method(s) none

Makes prioritization/seletion no

A Model-Based Regression Test Seletion Approah for Embedded

Appliations [7℄

A ompound model-based regression test seletion tehnique for embedded

programs is proposed in this paper. Also proposed a graph model of the program

under test (PUT). The authors mention to selet a regression test suite based on

sliing this graph model. They also propose a geneti algorithm-based tehnique

to selet an optimal subset of test ases from the set of regression test ases after

this seletion.

The embedded systems' advanement entails the growing omplexity of the

embedded programs. Objet-oriented tehnologies are being inreasingly adopted

for development beause of the advantages they o�er to handle omplexity.

Every software produt typially undergoes frequent hanges in its lifetime

to fxing defets, enhaning or modifying existing funtionalities, or adapting to

newer exeution environments. But this means also that the satisfatory testing

of the embedded programs has turned out to be a hallenging researh problem.

For testing, we need a huge set of test ases, whih we need to exeute for

regression testing. To save the resoures during regression testing we an selet

a subset from the regression test set and exeute only this subset of test ases.

These are mostly the test ases that exeutes the modi�ed parts of a program.

Test ases whih tests a part of the program that has been deleted during a

modi�ation an also be removed from the regression test set. Unfortunately,

many test ases that would detet regression errors are not seleted so we need

to hose the test seletion method wisely.

There are many test seletion algorithms, but only few of them are suitable

for embedded systems. Moreover, if this system is large, omplex and di�er-

ent parts of it are written in di�erent languages, than the traditional soure-

analyzing methods are useless. The new approah proposed in this paper is

the model-based regression testing and test seletion. The authors use a graph

model that is onstruted with program analysis. This model an also be used

for prioritizing the regression test ases and seleting an optimal test suite.

Brie�y the di�erent steps involved in the approah presented in this artile:

• The Intermediate Model Construtor onstruts the intermediate model

28

for the original program.

• The Code Instrumenter instruments the original program, and the instru-

mented ode is exeuted on the initial test suite by the Program Exeution

module.

• The Model Di�erener analyzes the modi�ed soure ode and identi�es the

model elements that are modi�ed and tags those elements on the model.

• The Slier performs a forward slie on the modi�ed marked model to

identify the a�eted model elements that need to be retested.

• The Optimizer analyzes additional information about the program ompo-

nents gathered from the operational pro�le, and prioritizes the test ases

based on the riteria used in the operational pro�le module.

• Subset of test ases than seleted.

In the next setion this paper shows the inadequay of existing graphial

models to embedded systems and shows an extended one from them that is

suitable for embedded program's regression test seletion. The artile shows

the additional features of the model in detailes. These features are the repre-

sentation of the ontrol �ow, exeption handling and information representation

from design models.

The authors also shows a method brie�y for test seletion and for the test

suit optimisation.

input type program and test suit

output/result test set

programming language C, Java

implemented/tool support no

applied in real environment yes

spei� to embedded systems yes

use some overage measure no

omputes some overagemeasure model

instrumentation tehnique soure ode, model

requires soure ode yes

BB testing method(s) model-based

Makes prioritization/seletion yes

4.3 Grey-box

In this setion white-box aided blak-box testing methods (speially, overage

aided random testing, test ase prioritization and seletion) are assessed.

Ahieving both Model and Code Coverage with Automated Gray-box

Testing [38℄

The Mirosoft Researh have developed a devie for helping blak-box testing.

It makes a tree from the spei�ation by model heking and makes Model-Based

Tests by disovering the paths in this tree. This devie is the Spe Explorer.

29

An other devie developed by them, the Pex, is helping White-Box Testing

by making parametrized unit tests from program-trees and spei�es the inputs

itself. It ollets informations during the exeution to make better random

inputs and to groups the paths that have the same outome. The exeution

stops when all inputs are tried or all groups are de�ned. In this way, Pex an

provide good path overage.

Both devie an be integrated into Visual Studio thus they are very e�e-

tively usable. Combined usage omputes the minimal number of parametrized

unit tests whih provides high overage.

The Spe Explorer is able to leave variables symboli during the disover of

the spei�ation. This proess is building up a mathematial struture about the

interdependene of the variants. The result is a program-tree whih disovered

by Pex, that provides not only inputs, but relevant values for the symboli

variants. In this way we an provides better overage and redue the number of

neessary unit tests.

Pex is monitoring the data and ontrol �ow by instrumenting the soure

ode and gives reports about bugs and overage.

We an build up the model (tree, data �ow, ontrol �ow) manually with Spe

Explorer by the provided notation and style. Next, running the Spe Explorer

on this model is providing the parametrized unit tests in C# and also ompile

these. Then Pex is using a symboli exeution on these tests to ompute the

inputs and the values for the symboli variables.

input type spei�ation, implementation

output/result program-tree, test senario, test inputs

programming language C, C++, C#, .NET

implemented/tool support SpeExplorer, Pex

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure model (path, branh, et.)

instrumentation tehnique instrution level, ode instrumentation

requires soure ode yes

BB testing method(s) model-based

Makes prioritization/seletion yes

Prioritization/seletion based on paths in the program tree

Generating Test Cases from UML Ativity Diagram based on Gray-

Box Method [41℄

The authors proposed an approah to generate test sequenes diretly from

the UML ativity diagram using a gray-box method, where the design is reused

to avoid the ost of test model reation. The paper shows that test senarios an

diretly derive from the ativity diagram that modeling an operation. Therefore,

all the information, suh as test sequenes or test data, is extrated from eah

test senario. Gray-box testing method, in the designers' viewpoint, generates

test sequenes based on high level design models whih represent the expeted

struture and behavior of the software under test. Those spei�ations preserved

the essential information from the requirement, and are the basis of the ode

implementation. The design spei�ations are the intermediate artifat between

30

requirement spei�ation and �nal ode. Gray-box method extends the logial

overage riteria of white box method and �nds all the possible paths from the

design model whih desribes the expeted behavior of an operation. Then it

generates test sequenes whih an satisfy the path onditions by blak box

method and provide high path, struture, method and model overage.

input type UML Ativity Diagram

output/result test senario

programming language speial UML

implemented/tool support implemented, but no tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure behavior, method, model, path, stru-

tural

instrumentation tehnique no

requires soure ode no

BB testing method(s) model-based

Makes prioritization/seletion no

DART: direted automated random testing [27℄

The authors of this paper want to eliminate the handwritten test drivers and

test harnesses and give an automatism to generate these thus make the test

environment. To reah this goal they developed an approah, DART, whih

ontains the three tehniques below:

• retrieve the interfae and the harness of the program automatially by

stati ode analysis,

• automati test driver generation for this interfae, whih simulates the

most ommon harness of the program by random testing,

• dynami behavior analysis during tests to generate the next inputs thus

we an systematially ontrol the exeution between the alternative paths.

In testing, DART an reveal the regular errors like program rush, assertion

violation, in�nitive running. DART makes an instrumentation on the ode in

the level of RAM mahine, ollets data during running and alulates values

in the exeuted branh. By these informations DART de�nes the inputs for

the next exeution thus an other branh will be overed. The �rst inputs are

random values. Repeating the exeution we an over all the branhes in the

program tree (branh/path overage). DART an run symboli and real exeu-

tions parallel.

31

input type soure ode

output/result interfae graph, test driver, test inputs

programming language C, C++, Java

implemented/tool support it is implemented, but not have a tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure path, branh

instrumentation tehnique in RAM-mahine level

requires soure ode yes

BB testing method(s) model or graph based

Makes prioritization/seletion no

Robust test generation and overage for hybrid systems [35℄

This paper presents how to develop a framework for generating tests from

hybrid systems' models. The ore idea of the framework is to develop a notion

of robust test, where one nominal test an be guaranteed to yield the same

qualitative behavior with any other test that is lose to it.

Our approah o�ers three distint advantages:

1. It allows for omputing and formally quantifying the robustness of some

properties;

2. It establishes a method to quantify the test overage for every test ase;

3. The proedure is parallelizable and therefore, very salable.

The ultimate goal of testing is to over the entirety of the set of testing

parameters so in the end provide high path and model overage.

When the set of testing parameters is an in�nite set, it is obvious that we

annot exhaustively test eah of the testing parameters. However, it is possible

that one testing parameter is representative of many others. A testing parameter

is said to be robust if a slight (quanti�able) perturbation of the parameter is

guaranteed to result in a test with the same qualitative properties. Robustness

an lead to a signi�ant redution in the set of testing parameters.

They use a spei� bi-simulation, where are no inputs, but properties. This

bi-simulation is symmetri and somehow same to pairwise testing.

32

input type model

output/result set of robust tests + inputs

programming language none

implemented/tool support implemented, but not have a tool

applied in real environment yes

spei� to embedded systems yes

use some overage measure no

omputes some overagemeasure model, path

instrumentation tehnique no

requires soure ode no

BB testing method(s) model-based, random seed for inputs

Makes prioritization/seletion seletion

Prioritization/seletion based on robustness

Spei�ation Coverage Aided Test Seletion [50℄

This paper onsiders test seletion strategies in formal onformane testing.

Ioo [56℄ is used as the testing onformane relation, and extended to inlude

test seletion heuristi based on a spei�ation overage metri. The proposed

method ombines a greedy test seletion with randomization to guarantee om-

pleteness. Bounded model heking is employed for lookahead in greedy test

seletion.

It is partiularly useful in testing implementations of ommuniation proto-

ols like as tele- and data ommuniation �elds. Formal onformane testing

formalizes the onepts of onformane testing.

Essential notions, like ioo, inlude the implementation, the spei�ation and

onformane relation between these two. Ioo is de�ed by restriting inlusion

of out-sets to suspension traes of the spei�ation. It uses labeled transition

system to introdue onformane relation.

Using overage that measures the exeution of all the lines of a soure ode

at least one is a good hoie to enhane test seletion. Unfortunately, in blak

box testing this is not possible, beause we do not know the internals of the

atual implementation. From a pragmati point of view, if the implementation

is made aording to the spei�ation (or vie versa) it is somewhat likely that

they resemble eah other. Therefore this paper takes the assumption that in

many ases arising in pratial test settings, spei�ation based overage an

"approximate" overage used in white box testing.

This paper desribes the used labeled transition system's notation, the ioo

onformane relation, on-the-�y testing, petri nets, and in the end, it desribes

the developed test seletion methodology and algorithm.

They extended an on-the-�y algorithm from an other work [18℄.

The �rst extension is to keep trak of the used overage metri.

The seond hange is to use the HeuristiTestMove algorithm as the TestMove

subroutine. It will all a greedy overage based test seletion subroutine. If the

greedy test seletion subroutine ould not provide anything, it alls the already

presented random test seletion subroutine.

33

input type test set

output/result seleted test's set

programming language none

implemented/tool support implemented

applied in real environment yes

spei� to embedded systems no

use some overage measure spei�ation overage

omputes some overagemeasure no

instrumentation tehnique no

requires soure ode no

BB testing method(s) random with greedy seletion

Makes prioritization/seletion seletion

Prioritization/seletion based on spei�ation overage

4.4 Tools

In this setion, the overview of existing solutions in the �eld of automated

software and hardware testing is given. The most information and theoretial

knowledges are still o�ered by ahievements in domain of aademi researh,

with huge number of published sienti� papers and tools developed through

the realization of international projets. Beside, this setion analyses industrial

solutions for automated testing that are more funtional and less ompliated

for both installation and usage unlike the aademi solutions (this is justi�ed

by the fat that their ontinuous development and improvement are provided

by the ompany). Finally, signi�ant soure of information is the database of

patents, due to the tendeny of many ompanies to protet their intelletual

Property.

Majority of these tools are intended for testing both software and hardware.

When the hardware of embedded systems is tested, ustom interfaes (in terms

of software) are used for that purpose. These interfaes interat with the system

by ontrolling and observing it through general interfaes (ports) that the system

already has (in the ase of blak-box), or by making speial support for testing.

Support added for testing purposes an be onsisted of both hardware (e.g.

adding debug interfae) and software (adding support for ommuniation with

testing interfae through dediated debug interfae or through existing interfae

like COM port, Ethernet, di�erent serial interfaes, et.).

Based on the relationship of the proess of generating and exeuting tests,

the existing approahes in the �eld of automated testing an be divided into the

following groups of solutions:

• Automated test generation (for o�-line exeution),

• Automated test generation integrated with test exeution (on-line testing),

• Automated test exeution (o�-line testing).

Some solutions additionally o�ers support for o�-line test analysis.

The Overview of Existing Approahes and Tools for Automated

Model-Based Test Generation

34

MaTeLo Tool for making the model of system, model hek, generation

of test senarios based on the given model and the analysis of test exeution

results [22℄.

The starting point of the modeling is the spei�ation that desribes the usage of

the system with ertain level of abstration. The model of the system is onsisted

of the states and transitions among them with assigned probabilities (the model

desribes expeted usage of the system and is based on Markov hains). One of

the biggest hallenge during the modeling is giving preise probability distribu-

tions. Tests are generated by making path through the model aording to one

of following riteria for test steps seletion: Chinese postman algorithm (tests

are generated to over all transitions, disregarding the probability distribution)

and seletion on the priniple of probability (leaving a state, the transition with

the highest probability is eleted). Though supported test formats are TTCN-3

and XML, the tool generates tests in several speial-purpose formats adapted

to ustomers (National Instruments TestStand, MBteh PROVEteh, IBM Ra-

tional Funtional Tester, HP QuikTest Professional, SeleniumHQ). Test results

analysis gives information like model overage, reliability of software/hardware,

mean time to failure, and failure probability. The tool is intended for funtional

testing, testing of integration and aeptane in the �eld of embedded systems.

During the usage of the tool, following de�ienies are observed:

• The size of the test set that an be generated in one pass is limited to 400,

• There is no support for the alulation of the number of the tests required

to ahieve desired reliability of the system.

The tool is developed through the international projet of the Fifth Frame-

work Programme (FP5). Nowadays, it is own by the All4te ompany and is

available on the market as a ommerial solution requiring an appropriate li-

ense.

input type some kind of model

output/result test ases, senarios

programming language TTCN-3, XML, user de�ned

implemented/tool support tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure spei�ation, ar and state

instrumentation tehnique no

requires soure ode no

BB testing method(s) Markov-model-based

Makes prioritization/seletion an make seletion

mbt Open soure tool for automated generation of test senarios aording

to the model [37℄. It doesn't support graphial presentation of the model, thus

the model given in .graphml format is required to be passed as input parameter

(it doesn't use UML format, avoiding unneessary omplexity). For making the

model, yEd tool ould be used. The model is onsisted of the states and tran-

sitions among them with assigned probabilities. As the riteria of test seletion

35

A* algorithm and random seletion, overage of states and transitions and oth-

ers are used. Beside generating tests for later (indiret) exeution, generating

integrated with exeution (on-line testing) is also supported.

input type model in GraphML

output/result test ases, senarios

programming language Java

implemented/tool support tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

BB testing method(s) model-based

Makes prioritization/seletion seletion

TorX The tool for automated generation of test senarios for testing the

ompliane of the system with a ertain standard, intended for the lass sys-

tems whose operating mode involves interation with the environment (reative

systems), e.g. embedded systems, ommuniation protools, et. [55℄. Tests are

derived from system behavioral model and some environmental aspets ould be

partially desribed also (system's environment model). For generation of tests

senarios the ioo algorithm is used, whih aims the de�nition of �nite test set

whih will disover as muh errors as possible during testing with limited dura-

tion. Test senarios are seleted on several ways: randomly, by usage of ad ho

test spei�ation, based on some heuristis, or by the riteria of model overage.

In earlier versions, the tool supported integrated test generation and exeution

only (on-line testing), i.e. test senarios were generated as needed during the

exeution. The regime where previously prepared test set is used in exeution

(o�-line testing) is enabled later. Basi harateristis of the tool are �exibility

and openness. The �exibility provides simple substitution of any omponent of

the tool with the improved one, while the openness relates to the possibility of

adding new independent (third-party) omponents. The tool supports repeated

exeution of test sets derived from di�erent spei�ations, with di�erent on-

�gurations, and the like (test ampaign). Additionally, arhiving results on a

systemati way is supported. The tool is used in several studies. Luent R&D

Center Twente is suessfully used by TorX for testing of network protools [55℄.

The tool is also used for testing the system for onferene protool [19℄ and for

testing the highway tolling system [17℄. However, some de�ienies of the tool

are observed during the usage [55℄:

• Insu�ient support for testing the real-time appliations, and

• Bad performane of generating test senarios.

Other de�ienies of the tool that are observed:

• No possibility for model analysis (e.g. model overage) and the analysis

of test results,

36

• No possibility for assigning the probability of transitions between states,

• Big omplexity of installation and on�guration of the tool, and

• Though the tool supports separated generation and exeution of tests (o�-

line testing), the doumentation about that is not available.

Though the tool is available for aademi researhes [26℄, the omplexity of

the proess of installation and on�guration limits its pratial appliation to a

large extent. Moreover, studies in whih the tool was used were performed or

assisted by the author of the tool. The aforementioned reasons have ontributed

to the development JTorX tools.

input type behavioral and environment model

output/result test ases, senarios

programming language any

implemented/tool support tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

BB testing method(s) ioo algorithm

Makes prioritization/seletion seletion

Prioritization/seletion based on randomly, ad ho test spei�ation,

heuristis, riteria of model overage

JUMBL The tool for statistial model-based testing [49℄. It is developed

in Java programming language, in order to be platform independent. TML

language (notation for desription of Markov hains) is used for the model de-

sription. The model is onsisted of the states and the transitions among states

related to pairs of input events and orresponding probabilities. The tool doesn't

support graphial model desription, but the model parameters are given in text

format, through the ommand line. The tool supports model analysis in terms of

model size, expeted length of the test senario, expeted duration of retention

in the eah state of the model during testing, expeted number of ourrenes

for eah state and transition in the test senario, et. JUMBL enables the anal-

ysis of test results and the measure of tested system reliability. Calulation of

system reliability is based on the previously proposed model [44℄. In �rst step,

the best reliability is alulated, i.e. the reliability that will be ahieved if all

tests pass one they are exeuted. This step doesn't require exeution of tests

and serves to alulate the size of test set needed for ahieving desired reliability

level. In the next step, real reliability is alulated as the ratio of suessfully

and unsuessfully exeuted tests. The de�ieny of the tool is lak of support

for graphial notation of the model and, more important, though the tool was

originally available for aademi usage, urrently it is not.

37

input type model in TML language

output/result test ases, senarios

programming language Java

implemented/tool support tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

BB testing method(s) Markov-model-based

Makes prioritization/seletion seletion

TGV The tool for generation of the tests intended for veri�ation of om-

pliane of the system with the standard in the area of the protool [57℄. The

model of the system under test is based on the prinipal of labeled transitions

(labeled transition systems). Ioo algorithm is used for the generation of test

senarios, with the riteria for test seletion de�ned by test spei�ation. The

tool supports the assignment of time ontrols at the time of test exeution [23℄.

E.g. time ontrol is started in the moment then input event is expeted. If

the input event happens, time ontrol is stopped. Otherwise, the test exeution

is onsidered as unsuessful. The tool is used in the studies of protool test-

ing [34℄.

input type labeled transitions model

output/result test ases, senarios

programming language TTCN

implemented/tool support tool for protool testing

applied in real environment no

spei� to embedded systems no

use some overage measure branh

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

BB testing method(s) ioo algorithm

Makes prioritization/seletion seletion

Prioritization/seletion based on spei�ation

AETG The generator of inputs for ombined model-based testing [11℄.

In ombined testing approah, test senarios are de�ned so that all the om-

binations of test parameters are overed (user inputs, internal and external

parameters, et.). Number of these test senarios ould be huge in pratie.

The tool provides optimal seletion of double, triple and quadruple inputs, i.e.

it de�nes inputs, but it doesn't support providing of expeted outputs whih

are neessary in the ase of automated testing. Though the tool models system

environment, there is no support for desribing the behavior of system under

test. AETG is ommerial tool intended for testing di�erent on�gurations of

devie or any other produt where parameters seletion is important. It is used

in several studies for testing ompliane with the protool spei�ation.

38

input type some model

output/result test ases, senarios

implemented/tool support tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure n-*way overage

instrumentation tehnique no

requires soure ode (yes/no) no

Makes prioritization/seletion seletion

Prioritization/seletion based on all parameters overed

LTG Commerially available tool for the generation of tests intended for

the testing of the systems that reats to the stimuli from the environment, em-

bedded systems and appliations for eletroni transations [6℄. The generation

of tests is based on the system usage model, where the overage of the model is

used as the riteria for test seletion. The tool is used for testing of the smart

ard appliations [8℄.

input type system usage model

output/result

implemented/tool support tool

applied in real environment yes

spei� to embedded systems yes

use some overage measure yes

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

Makes prioritization/seletion seletion

Prioritization/seletion based on overage

Conformiq Tool Suite The Conformiq ompany provides the Conformiq

Tool Suite for modeling the system and for automated generation of model-

based test senarios [12℄. It is possible to desribe the model graphially (UML

notation) or textually (QML - Qtroni Modelling Language, based on Java and

C# languages) [32℄. Beside the generation of test set for later exeution (o�-

line testing), the test generation integrated with test exeution is also supported

(on-line testing). It is possible to use the tool from Elipse environment or as the

standalone tool. It is available for both Windows and Linux operating systems.

It supports several test �le formats: TCL, TTCN-3 Visual Basi, HTML, and

XML. The tool is available with ommerial liense.

39

input type UML or QML model

output/result test ases, senarios

programming language Python, TCL, TTCN-3, C, C++, Vi-

sual Basi, Java, Junit, Perl, Exel,

HTML, Word, Shell Sripts

implemented/tool support tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

Makes prioritization/seletion seletion

Prioritization/seletion based on state overage, transition overage, 2-

transition overage, Boundary Value

Analysis, Branh Coverage, Atomi

Condition Coverage, Method Coverage,

Statement Coverage, Parallel Transi-

tion Coverage

Spe Explorer Mirosoft introdued the Spe Explorer tool designed to

test the software on the priniple of modeling [43℄. Behavioral model is generated

by the software based on the soure ode and de�ned by C# programming

language. The model is also represented as the graph for easier readability

for the user. After verifying the orretness of the model, test senarios are

generated. Spe Explorer is an extension of Mirosoft Visual Studio tool set,

and is supplied as an integral part sine the version 2010 of Visual Studio.

Mirosoft has patented a method and system for software testing and mod-

eling of user behavior [2℄. Aspets of using the software under test are desribed

by the model, whih is then used to generate tests. The method uses several

algorithms for test exeution, depending on the goal of testing: Chinese post-

man algorithm, the seletion of test steps in a random manner or ontrary to

the priniple of random seletion, i.e. the next test step is one that has not

previously been seleted.

input type spei�ation or model

output/result test senarios or a graph

programming language C#, .NET

implemented/tool support Visual Studio 2010 Ultimate and above,

SpeExplorer

applied in real environment yes

spei� to embedded systems no

use some overage measure behavioral, branh

omputes some overagemeasure ode

instrumentation tehnique .NET assembly level, binary inst.

requires soure ode yes

BB testing method(s) Markov-model-based

Makes prioritization/seletion an make both

Prioritization/seletion based on some user-de�ned aspet

40

The Overview of Existing Approahes and Tools for Automated

Model-Based Test Generation Integrated with Test Exeution

JTorX The suessor of TorX tool, developed to remove some of the draw-

baks of the previous version [5℄. TorX is developed to support the �exibility

and openness, while some important features suh as ease of installation, multi

platform support, ease of use, and others are ignored. JTorX is developed using

Java programming language, thus failitating the installation. Also, added a

graphial user interfae, whih enables easy on�guration of the tool. Besides

improved ioo algorithm for test generation [54℄, JtorX supports uioo algo-

rithm. One feature that haraterizes this partiular tool and distinguishes it

from similar tools is the advantage for use in teahing. JTorX is available for

aademi purposes [25℄.

input type behavioral and environment model

output/result test ases, senarios

programming language Java

implemented/tool support tool

applied in real environment yes

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

BB testing method(s) improved ioo algorithm, uioo algo-

rithm

Makes prioritization/seletion seletion

Prioritization/seletion based on randomly, ad ho test spei�ation,

heuristis, riteria of model overage

AGEDIS The tool for automated model-based testing of distributed sys-

tems. It onsolidates the environment for model desription (UML model de-

sription), the model-hek, test generation, model overage analysis, test exe-

ution, the analysis of deteted failures, and the generation of testing reports,

[33, 30℄. The tests are generated by the kernel of TGV tool, while the analysis

of model overage is realized with FoCuS tool [4℄. Test exeution is supported in

distributed work regime. The tool was at �rst available for aademi purposes,

however, it is not maintained and urrently not available.

41

input type UML model

output/result test ases, senarios, reports

programming language Abstrat Test Suite (ATS)

implemented/tool support tool

applied in real environment no

spei� to embedded systems no

use some overage measure no

omputes some overagemeasure yes

instrumentation tehnique no

requires soure ode no

BB testing method(s) based on overage of inputs to the

model

Makes prioritization/seletion no

The Overview of Existing Approahes and Tools for Automated Test

Exeution Sony has patented a system for automati testing of TV sets,

whih is a unit testing approah using a blak box [59℄. The tests onsist of a

series of sequenes that are sent in the �rst step to the TV. After proessing,

output signals from the TV are reorded and ompared with expeted aording

to the relevant priniples. The system onsists of: (i) the unit to reord the TV

output, (ii) devies for the TV remote ontrol, (iii) a PC that performs the

appropriate appliation for testing and is assoiated with a database to store

the tests, and (iv) test results. Another solution patented by Sony in the �eld

of system testing is the system for automated testing of onsumer eletronis

devies (audio / video devies, TV sets), with a fous on devie performane

testing [24℄. Unlike previous solutions, ommuniation with the tested appliane

is aomplished via the ommand odes that are transmitted wireless. Similar

to the previous design, the system is designed to test the video quality on the

TV. Unlike the previous one, this solution veri�es the memory onsumption of

the test devie.

Philips has patented a system and method for automated testing of the TV

sets [51℄. The system onsists of a unit that sends digital video signals to the

TV as inputs and, after proessing the test signal, reeives output video signals

from the TV. Proessing unit performs omparison of the referene and the

output (test) signal and, based on appropriate algorithms, evaluates the quality

of video signal from the TV. Jitter, SNR (signal-to-noise ratio) measure, and

bloks' similarity perentage are used as the riteria for omparison of test and

referene signals.

The ompany Hon Hai Preision Industry has patented a system for au-

tomated performane measurement for set-top box devies [42℄. The system

onsists of the audio and video test signals soure, the testing proess ontroller

(PC), and the enoder and analyzer of audio and video signals. Based on the

ontent of the test senario, the ontroller of the testing proess triggers soures

of audio and video signals, to generate test signals for the system under test.

The signal is then onverted to the orresponding data stream format and trans-

ferred to the system under test. By passing of a given data stream through the

system, output test signal is reeived. Based on the test senario, the ontroller

of the testing proess sets the parameters of audio and video signals' analyzer.

Test signal is analyzed aording to these parameters. The system is appliable

42

for audio and video signal analysis and performane measurement for set-top-

box devies.

5 Evaluation and omparison

In this setion, a detailed assessment of relevant tools is shown. We separately

evaluate blak-box, white-box, and gray-box tehniques and tools.

5.1 Blak Box Testing

Seletion G#/ Prioritization H#

Requires Soure Code

Instrumentation: soure G#/ binary H#

Spei� to Embedded Systems

Applied in Real Environment

Implemented Tool Support

Programming Language

Output / Result

Input

P.

[13℄ Matlab,

Simulink,

State�ow model

Classi�ation

tree

PROGRES # # #

[20℄ Some kind of

model

Test ases,

senarios

� # # # #

[29℄ Some kind of

model

Test ases,

senarios

TTCN-3 # # G#

[15℄ Requirements

spei�ation

Test suite C # # G#

[45℄ UML use ases Test suite C++ # # # #

[39℄ State diagram Test ases � # # # # G#

[52℄ State hart Test ases C++ # # # # #

[9℄ Spei�ation or

model

Test senarios

or a graph

C#, .NET # H#

[53℄ Any kind of

unit tests or

implementation

Parameterized

unit tests

Java, .NET # # # #

[47℄ Model or soure

ode

Test suite and

inputs

Java, .NET # # #

[28℄ Control �ow Test suite C, Prolog # # # # #

[10℄ Input domain Test inputs C++ # # # # # #

Table 1: Assessment of blak-box testing methods.

In Table 1 we present an overview of the overall lassi�ation and evaluation

riteria. The �rst olumn presents the itation index of the method, and the

next olumns are as follows:

Input Input type, whih is usually some kind of model, soure ode or spei�-

ation given in a suitable form (hart or diagram).

Output / Result A brief output/result desription.

Programming Language The used programming language for eah method.

Implemented Tool Support Whether the supporting tool is implemented.

43

Applied in Real Environment Whether the method is applied in real envi-

ronment.

Spei� to Embedded Systems Is the method used for embedded systems

testing.

Instrumentation The used instrumentation tehnique, soure ode or binary

instrumentation.

Requires Soure Code Is the soure ode required?

Seletion / Prioritization Is test ase seletion or prioritization possible?

The most promising method in BBT is the MaTeLo testing suite for au-

tomati software validation, although it is not ommon in embedded system

usage.

5.2 White Box Testing

The evaluation riteria for white box methods are the following:

Input type Gives the input of the evaluated method.

Output / result Gives output and / or result of the evaluated method.

Programming language Denotes whether the evaluated method is spei�

for some programming languages, or it an be applied to any programming

language.

Implemented / tool support Indiates whether the method is implemented

fully or partially, or there are tools that support this method.

Applied in real environment Indiates whether the method is purely theo-

retial, or it has been applied and its appliability has been proven in real

senarios.

Spei� to embedded systems Indiates whether the evaluated method is

spei� to embedded systems environment, or it is general and an be

e�etively used not only in embedded systems.

Use some overage measure Indiates whether the method uses some kind

of overage values (e.g. ode or funtional overage) as input.

Computes some overage measure Indiates whether the method omputes

some kind of overage values (e.g. ode or funtional overage) as output.

Instrumentation tehnique If instrumentation is used in the method, this

point gives the instrumentation tehnique (e.g. soure ode, binary, et.)

Requires soure ode Indiates if the method requires the soure ode of the

system under test, or works from some other test basis.

BB testing method(s) This point indiates the general blak-box testing meth-

ods that are speialized in the evaluated solution.

44

Makes seletion / prioritization Indiates usage of test ase seletion/ pri-

oritization tehniques and shows exatly what kind of tehnique is used.

Prioritization / seletion based on Shows the base measure or data of the

used test ase prioritization/seletion tehniques (e.g. extent of ode ov-

ered, time required for exeution, et.).

Seletion G#/ Prioritization H#

BB testing method

Requires Soure Code

Instrumentation: soure G#/ binary H#

Spei� to Embedded Systems

Applied in Real Environment

Implemented Tool Support

Programming Language

Output / Result

Input

P.

[14℄ soure ode perentage

of observed

statements

C,

C++

G# �

[46℄ soure

ode,

implemen-

tation,

interfae

sets of

loses

� # # # use ases,

boundary

values,

abstrat

implemen-

tation

#

[40℄ formal

model

boundary

overage

B, Z,

VDM,

UML/

OCL

 G# # # � G#

[31℄ Embedded

System

instru-

mented

system

C H# # � #

Table 2: Assessment of white-box testing methods.

Also, in Table 2 onerning WBT tehniques, for eah one, the input type,

outputs/results, programming language, implemented tool support, is the method

supplied in real environment, or spei� to embedded systems, an it implement

the instrumentation tehnique, does it require the soure ode, is it possible to

ombine with the BBT testing tehnique, or an the seletion/prioritization be

implemented during testing.

We an onlude that the �Boundary overage riteria for test generation

from formal models� is the most promising method, but it does not perform

instrumentation, nor does it require soure ode. It also an perform seletion

and prioritization, but is not used in BBT.

5.3 Gray Box Testing

In this setion white-box aided blak-box testing methods (speially, overage

aided random testing, test ase prioritization and seletion) are assessed.

In Table 3, we give a brie�ng of the methods for gray-box testing. For eah

method, a brief evaluation onerning main spei�ations is presented. It seems

that the �rst method whih ahieves both model and ode overage has the best

options.

45

Seletion G#/ Prioritization H#

BB testing method

Requires Soure Code

Instrumentation: soure G#/ binary H#

Spei� to Embedded Systems

Applied in Real Environment

Implemented Tool Support

Programming Language

Output / Result

Input

P.

[38℄ Spei�-

ation,

implemen-

tation

Program

tree, test

senarios,

test inputs

C,

C++,

C#,

.NET

 # G# Model-

based

[41℄ UML

ativity

diagram

Test

senarios

UML # # # # Model-

based

#

[27℄ Soure

ode

Interfae

graph, test

drivers,

test inputs

C,

C++,

Java

H# Model or

graph-

based

#

[35℄ Model Test ases,

test inputs

� # # # Model-

based,

random

G#

[50℄ Test set Seleted

test set

� # # # Random G#

Table 3: Assessment of gray-box testing methods.

5.4 Tools

Table 4 gives a brie�ng of approahes and tools for automated model-based

test generation with similar properties overview like in previous tables, but also

with information of overage usage and its omputation, seletion/prioritization

possibilities and the methods they are based on. Whih one of these tools are

mostly e�ient, of ourse depends on the needs of the user. For example, LTG is

both used in embedded systems and has many other advantages. Another good

example is the Spe-explorer tool, but it is not for embedded systems usage.

Table 5 shows only two existing tools for automated model-based test gen-

eration integrated with test exeution. The same properties are presented for

eah one.

6 Conlusions

During the assembly of this survey, we made the following observations.

There are many blak-box and white-box testing tehniques exist that are

not spei� to but an potentially be used in embedded systems enviromnents.

Although the ombination of blak-box and white-box testing methods is men-

tioned many times as a method that an result in better testing, in these papers

di�erent tehniques are rarely ombined. Mostly fragments and partial solu-

tions, but not omplex proesses are presented. For example, even if test exe-

ution produes some additional data, there is no feedbak into some previous

step of the proess. Overall, although there are many possibilities to be used in

embedded systems testing, these are not utilized (or at least not reported).

46

Seletion (G#) / prioritization (H#)

BB testing method

Requires soure ode

Instrumentation: soure (G#) / binary (H#)

Uses (G#) / omputes (H#) overage

Spei� to Embedded Systems

Applied in Real Environment

Programming Language

Output / Result

Input

Tool

MaTeLo Model Test

ases,

senarios

TTCN-3,

XML,

ustom

 # H# # # Markov

model

G#

mbt GraphML Test

ases,

senarios

Java # H# # # Model-

based

G#

TorX Behav-

ioural

and

environ-

mental

model

Test

ases,

senarios

Any # H# # # Ioo

alg.

G#

JUMBL TML

Model

Test

ases,

senarios

Java # H# # # Markov

model

G#

TGV Labelled

Transi-

tion

Model

Test

ases,

senarios

TTCN # # # # Ioo

alg.

G#

AETG Model Test

ases,

senarios

� # H# # # � G#

LTG System

usage

model

� � # # � G#

Conformiq UML or

QML

model

Test

ases,

senarios

Python,

TCL,

TTCN-3,

C, C++,

Visual

Basi,

Java,

Junit,

Perl,

Shell

Sripts

 # H# # # � G#

Spe

Explorer

Spei�-

ation or

model

Test

senarios

C#,

.NET

 # Markov

model

Table 4: Overview of Existing Approahes and Tools for Automated Model-

Based Test Generation.

In addition, despite of there are some promising tools, whih ould be ef-

fetively used to ease testing and/or improve its quality, neither of them are

speialized for embedded systems. And there are only a very few papers report

on the appliation of these testing tehniques in embedded systems, and most

of these papers report on results, and not on tehnial details.

47

Seletion (G#) / prioritization (H#)

BB testing method

Requires soure ode

Instrumentation: soure (G#) / binary (H#)

Uses (G#) / omputes (H#) overage

Spei� to Embedded Systems

Applied in Real Environment

Programming Language

Output / Result

Input

Tool

JTorX Behav-

ioural

and

environ-

mental

model

Test

ases,

senarios

Java # H# # # Improved

ioo alg.,

uioo alg.

G#

AGEDIS UML

Model

Test

ases,

senarios

ATS # # H# # # Based on

overage

of inputs

to the

model

#

Table 5: Overview of Existing Approahes and Tools for Automated Model-

Based Test Generation.

Thus, it seems to be that a good general framework for embedded systems

testing is still missing from the market.

Aknowledgement

This work were done in the Cross-border ICT Researh Network (CIRENE)

projet (projet number is HUSRB1002/214/044) supported by the Hungary-

Serbia IPA Cross-border Co-operation Programme, o-�naned by the

European Union.

Referenes

[1℄ Debugging, August 2012.

[2℄ D. Ahlioptas, C. Borgs, J. Chayes, Robinson H., J. Tierney, and Mirosoft

Corporation. Methods and systems of testing software, and methods and

systems of modeling user behavior, 2009.

[3℄ Lua De Alfaro and Thomas A. Henzinger. Interfae automata. In Pro-

eedings of the Ninth Annual Symposium on Foundations of Software En-

gineering, pages 109�120. ACM Press, 2001.

[4℄ alphaWorks. Fous homepage, http://www.alphaworks.ibm.om/teh/fous.

[5℄ A. Belihfante. Jtorx: A tool for on-line model-driven test derivation and

exeution. Tools and Algorithms for the Constrution and Analysis of Sys-

tems, Leture Notes in Computer Siene, 6015:266�270, 2010.

48

[6℄ E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F. Peureux, M. Ut-

ting, and E. Torreborre. Model-based testing from uml models. Leture

Notes in Informatis, pages 223�230, 2006.

[7℄ Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Suku-

maran. A model-based regression test seletion approah for embedded

appliations. SIGSOFT Softw. Eng. Notes, 34(4):1�9, July 2009.

[8℄ F. Bouquet, B. Legeard, F. Peureux, and E. Torreborre. Mastering test

generation from smart ard software formal models. In Proeedings of the

International Workshop on Constrution and Analysis of Safe Seure and

Interoperable Smart devies, pages 70�85. Springer-LNCS, 2004.

[9℄ Colin Campbell, Wolfgang Grieskamp, Lev Nahmanson, Wolfram Shulte,

Nikolai Tillmann, and Margus Veanes. Testing onurrent objet-oriented

systems with spe explorer. In Formal Methods, volume 3582 of Leture

Notes in Computer Siene, pages 542�547. Springer, 2005.

[10℄ T.Y. Chen. Adaptive random testing. In Quality Software, 2008. QSIC

'08. The Eighth International Conferene on, page 443, August 2008.

[11℄ D.M. Cohen, S.R. Dalal, A. Kajla, and G.C. Patton. The automati e�-

ient test generator (aetg) system. In Proeedings of the 5th International

Symposium on Software Reliability Engineering, pages 303�309, November

1994.

[12℄ Conformiq In. Homepage, http://www.onformiq.om/produts/, Au-

gust 2012.

[13℄ Mirko Conrad, Heiko Dörr, Ingo Stürmer, and Andy Shürr. Graph trans-

formations for model-based testing. In Modellierung in der Praxis - Mod-

ellierung für die Praxis, Modellierung 2002, pages 39�50. GI, 2002.

[14℄ José C. Costa, Srinivas Devadas, and José C. Monteiro. Observability

analysis of embedded software for overage-direted validation. In In Pro-

eedings of the International Conferene on Computer Aided Design, pages

27�32, 2000.

[15℄ S.J. Cunning and J.W. Rozenblit. Automati test ase generation from

requirements spei�ations for real-time embedded systems. In Systems,

Man, and Cybernetis, 1999. IEEE SMC '99 Conferene Proeedings. 1999

IEEE International Conferene on, volume 5, pages 784�789, 1999.

[16℄ Alan M. Davis. A omparison of tehniques for the spei�ation of external

system behavior. Commun. ACM, 31(9):1098�1115, September 1988.

[17℄ R. G. de Vries, A. Belinfante, and J. Feenstra. Automated testing in pra-

tie: The highway tolling system. In Proeedings of the IFIP 14th Interna-

tional Conferene on Testing Communiating Systems XIV, pages 219�234.

Kluwer Aademi Publishers, 2002.

[18℄ René G. de Vries and Jan Tretmans. On-the-�y onformane testing us-

ing spin. International Journal on Software Tools for Tehnology Transfer

(STTT), 2:382�393, 2000. 10.1007/s100090050044.

49

[19℄ L. Du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. Belinfante,

and R. de Vries. Formal test automation: The onferene protool with

tgv/torx. In Proeedings of the 13th International Conferene on Test-

ing Communiating Systems (TestCom 2000), page 221�228, August 29 -

September 1 2000.

[20℄ I. K. El-Far and J. A. Whittaker. Model-based software testing. In Eny-

lopedia of Software Engineering, pages 1�22. John Wiley & Sons, 2001.

[21℄ V. Enontre. Testing embedded system: Do you have the guts for it?, 2004.

[22℄ A. Feliahi and H. Le Guen. Generating transition probabilities for auto-

mati model-based test generation. In Proeedings of the Third Interna-

tional Conferene on Software Testing, Veri�ation and Validation, pages

99�102, April 2010.

[23℄ J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. An experiment in auto-

mati generation of onformane test suites for protools with veri�ation

tehnology. Siene of Computer Programming, 29:123�146, 1997.

[24℄ P. Flores, V. Mehta, H. Nguyen, M. Sharma, C. Walsh, T. Xiong, and Sony

Eletronis. Automated test for onsumer eletronis, 2010.

[25℄ Formal Methods and Tools researh group, University of

Twente. JTorX - a tool for model-based testing, homepage,

http://fmt.s.utwente.nl/tools/jtorx/, August 2012.

[26℄ Formal Methods and Tools researh group, University of Twente,

Eindhoven Tehnial University, Philips Researh Laborato-

ries, and Luent Tehnologies. TorX test tool homepage,

http://fmt.s.utwente.nl/tools/torx, August 2012.

[27℄ Patrie Godefroid, Nils Klarlund, and Koushik Sen. Dart: direted auto-

mated random testing. In Proeedings of the 2005 ACM SIGPLAN on-

ferene on Programming language design and implementation, PLDI '05,

pages 213�223, New York, NY, USA, 2005. ACM.

[28℄ Arnaud Gotlieb and Matthieu Petit. Path-oriented random testing. In

Proeedings of the 1st international workshop on Random testing, RT '06,

pages 28�35, New York, NY, USA, 2006. ACM.

[29℄ A Guiotto, B Aquaroli, and A Martelli. MaTeLo: Automated Testing Suite

for Software Validation, pages 253�261. ESA, 2003.

[30℄ A. Hartman and K. Nagin. The agedis tools for model based testing.

Test generation - ACM SIGSOFT Software Engineering Notes arhive,

29(4):129�132, July 2004.

[31℄ Kim Hazelwood and Artur Klauser. A dynami binary instrumentation

engine for the arm arhiteture. In Proeedings of the 2006 international

onferene on Compilers, arhiteture and synthesis for embedded systems,

CASES '06, pages 261�270, New York, NY, USA, 2006. ACM.

50

[32℄ A. Huima. Implementing onformiq qtroni. In Testing of Software and

Communiating Systems (TestCom/FATES'07), volume 4581/2007, pages

1�12. Springer-LNCS, 2007.

[33℄ IBM Researh Laboratory in Haifa, Oxford University Computing Labora-

tory, Verimag laboratory at Universite Joseph Fourier in Grenoble, Frane

Teleom R&D, IBM development Laboratory in Hursley Park (UK), In-

trasoft International, and imbus AG, Moehrendorf, Germany. Automated

generation and exeution of test suites for distributed omponent-based

software, agedis homepage, http://www.agedis.de/index.shtml, August

2012.

[34℄ C. Jard and T. Je'ron. Tgv: Theory, priniples and algorithms. In Pro-

eedings of the Sixth World Conferene on Integrated Design and Proess

Tehnology, IDPT-2002, June 2002.

[35℄ A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and

George J. Pappas. Robust test generation and overage for hybrid systems.

In Proeedings of the 10th international onferene on Hybrid systems: om-

putation and ontrol, HSCC'07, pages 329�342, Berlin, Heidelberg, 2007.

Springer-Verlag.

[36℄ S. Kandl, R. Kirner, and P. Pushner. Automated formal veri�ation and

testing of programs for embedded systems. In Objet and Component-

Oriented Real-Time Distributed Computing, 2007. ISORC '07. 10th IEEE

International Symposium on, pages 373 �381, may 2007.

[37℄ Kristian Karl and Johan Tejle. mbt homepage, http://mbt.tigris.org/,

August 2012.

[38℄ Niolas Kiillof, Wolfgang Grieskamp, Nikolai Tillmann, and Vitor

Braberman. Ahieving both model and ode overage with automated

gray-box testing. In Proeedings of the 3rd international workshop on Ad-

vanes in model-based testing, A-MOST '07, pages 1�11, New York, NY,

USA, 2007. ACM.

[39℄ Niha Kosindrdeha and Jirapun Daengdej. A test generation method based

on state diagram. Journal of Theoretial and Applied Information Teh-

nology, 18(2):28�44, August 2010.

[40℄ N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary overage

riteria for test generation from formal models. In Software Reliability

Engineering, 2004. ISSRE 2004. 15th International Symposium on, pages

139�150, November 2004.

[41℄ Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuandong, and

Zheng Guoliang. Generating test ases from uml ativity diagram based

on gray-box method. In Proeedings of the 11th Asia-Pai� Software En-

gineering Conferene, APSEC '04, pages 284�291, Washington, DC, USA,

2004. IEEE Computer Soiety.

[42℄ P. Liu and Hon Hai Preision Industry. Automated test measurement sys-

tem and method therefor, 2008.

51

[43℄ Mirosoft. Spe Explorer homepage,

http://visualstudiogallery.msdn.mirosoft.om/

271d0904-f178-4e9-956b-d9bfa4902745/, August 2012.

[44℄ K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Niol, B.W. Mur-

rill, and M. Voas. Estimating the probability of failure when testing reveals

no failures. IEEE Transations on Software Engineering, 18(1):33�43, 1992.

[45℄ C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel. Automati test gen-

eration: a use ase driven approah. Software Engineering, IEEE Transa-

tions on, 32(3):140�155, Marh 2006.

[46℄ Hanne Riis Nielson and Flemming Nielson. Flow logi: a multi-

paradigmati approah to stati analysis. In Torben ÆMogensen, David A.

Shmidt, and I. Hal Sudborough, editors, The essene of omputation,

pages 223�244. Springer-Verlag New York, In., New York, NY, USA, 2002.

[47℄ C. Paheo, S.K. Lahiri, M.D. Ernst, and T. Ball. Feedbak-direted ran-

dom test generation. In Software Engineering, 2007. ICSE 2007. 29th In-

ternational Conferene on, pages 75�84, May 2007.

[48℄ A. Penttinen, R. Jastrzebski, R. Pollanen, and O. Pyrhonen. Run-time

debugging and monitoring of fpga iruits using embedded miroproessor.

In Design and Diagnostis of Eletroni Ciruits and systems, IEEE, pages

147�148, 2006.

[49℄ S. Prowell. Jumbl: A tool for model-based statistial testing. In Proeedings

of the 36th Annual Hawaii International Conferene on System Sienes,

page 337.3, 2003.

[50℄ T. Pyhala and K. Heljanko. Spei�ation overage aided test seletion.

In Appliation of Conurreny to System Design, 2003. Proeedings. Third

International Conferene on, pages 187�195, June 2003.

[51℄ A. Rau and Philips Eletronis. System and method for automated testing

of digital television reeivers, 2004.

[52℄ Valdivino Santiago, Ana Silvia Martins do Amaral, N. L. Vijaykumar,

Maria de Fatima Mattiello-Franiso, Eliane Martins, and Odnei Cuesta

Lopes. A pratial approah for automated test ase generation using stat-

eharts. In Proeedings of the 30th Annual International Computer Software

and Appliations Conferene, volume 02 of COMPSAC '06, pages 183�188,

Washington, DC, USA, 2006. IEEE Computer Soiety.

[53℄ N. Tillmann and W. Shulte. Unit tests reloaded: parameterized unit

testing with symboli exeution. Software, IEEE, 23(4):38�47, July-August

2006.

[54℄ J. Tretmans. Model based testing with labelled transition systems. In

Formal Methods and Testing, volume 4949, pages 1�38. Springer-LNCS,

2008.

[55℄ J. Tretmans and H. Brinksma. Torx: Automated model-based testing. In

Proeedings of the First European Conferene on Model-Driven Software

Engineering, pages 31�43, 2003.

52

[56℄ Jan Tretmans. Test generation with inputs, outputs and repetitive quies-

ene, 1996.

[57℄ Verimag. TGV, test generation with veri�ation tehnology, homepage,

http://www-verimag.imag.fr/tgv.html, August 2012.

[58℄ T. Wei-Tek, Y. Lian, Z. Feng, and R. Paul. Rapid embedded system testing

using veri�ation patterns. Software, IEEE, 22(4):68�75, July-Aug 2005.

[59℄ M. Wu and Sony Eletronis. Automated software testing environment,

2010.

[60℄ T. Yu. Testing embedded system appliations, 2010.

[61℄ Tingting Yu, Ahyoung Sung, W. Srisa-an, and G. Rothermel. Using

property-based orales when testing embedded system appliations. In

Software Testing, Veri�ation and Validation (ICST), 2011 IEEE Fourth

International Conferene on, pages 100 �109, marh 2011.

53

