Survey on Testing Embedded Systems

Arpad Beszédes! Taméas Gergely! Istvan Papp?

Vladimir Marinkovict Vladimir Zlokolicat *

"Department of Software Engineering, University of Szeged
{Faculty of Technical Sciences, University of Novi Sad

Abstract

Embedded systems are widely used in everyday life, thus the qual-
ity assurance of such systems are important. One of the quality assur-
ance methods is software testing. Different software testing methods have
different applicability in this special environment of embedded systems,
which sometimes require specific solutions for testing. The Department
of Software Engineering, University of Szeged and Faculty of Technical
Sciences, University of Novi Sad have started a joint project whose main
topic is embedded systems software testing. The goal of the project is the
combination of white-box and black-box testing methods to improve the
quality of the tests (and, transitively, the quality of the software) in digital
multimedia environment. The goal of this survey is to overview existing,
documented solutions for embedded system testing, concentrating on (but
not limited to) the combination of structural and functional tests.

Preface

The University of Szeged (USZ), University of Novi Sad (UNS) and Vojvodina
ICT Cluster (VOICT) have started a joint project called CIRENE. The project
is financed by the European Union, and its main goal is to establish a work-
ing cross-border cooperation between the parties. As a proof of concept, the
project included a joint research and development activity on embedded sys-
tems testing. The Faculty of Technical Sciences on UNS (FTN) has a long-time
experience in testing of multimedia embedded systems. Their main profile is
black-box testing of digital multimedia devices (digital T'Vs, set-top-boxes, etc.).
The Department of Software Engineering on SZTE (DSE) has been working on
improving testing quality using white-box testing methods. The goal of this
R&D activity is to exchange knowledge and jointly develop a method or meth-
ods specific to embedded systems in which white-box testing methods support
black-box methods, resulting in an improved quality of the tests implying higher
quality of the products.

This survey serves as a base of this R&D activity. The goals of this survey
are

* Additional authors of the paper: Gergé Balogh', Szabolcs Bognar®, Ivan Kastelan?, Jelena,
Kovacevict, Kornél Muhif, Csaba Nagy’, Miroslav Popovict, Robert Racz!, Tstvan Sikett,
Péter Vargal

e to search for previous works that utilizes black-box or white-box testing
techniques or their combination in embedded system environment,;

e to evaluate and classify these works by some defined evaluation and clas-
sification criteria, which helps selecting those ones that can be a base of
the to be defined methodologies of the R&D activity;

e compare different works by their applicability and potential in using them
in embedded systems environment.

The paper assesses the state of the art and enumerates a number of possibly ap-
plicable methods and solutions. Later on the project the general and specialized
methodologies will be created using this document as the source of knowledge.

1 Introduction

In this survey we try to assess the state of the art of embedded systems software
testing. Testing is an important task in software development, and different
circumstances entitles for different problems and different solutions. Embedded
systems are special types of systems with special attributes (e.g. the software
and hardware has more influence on eachother and cannot be entirely separated),
thus general testing methodologies can only be applied by limitations. This
survey collects and evaluates a number of existing testing methods and tools
that could be applied to test embedded systems.

In the rest of this section some background on software testing and embedded
systems testing is given. In Section 2 we describe the search methodology we
applied when assessing the state of the art. In Section 3 the criteria used to
evaluate and compare different solutions are given. In Section 4 the methods,
solutions, and tools that contribute to embedded systems testing are listed and
evaluated according to the criteria. In sections 4.1 and 4.2 black-box and white-
box methods are assessed. In Section 4.3 methods that combine black-box and
white-box elements are described and evaluated. In Section 4.4 some tools that
provides support for the above methods are listed. In Section 5 a comparison
of the different methods and/or tools is given. Finally, in Section 6 we draw
conclusions.

1.1 About Testing

Software testing is a very important risk management task of the software de-
velopment project. With testing, the risk of a residing bug in the software can
be reduced, and by reacting on the revealed defects, the quality of the software
can be improved. During testing different functionalities, behavior, or quality
attributes of the software can be checked and assessed.

Tests can be categorized by many point of view. Using static testing any
written workproduct (including source code) of the development process can
be examined without executing the software. Dynamic techniques examine the
software itself by executing it. Amongst many, there are two basic types of
dynamic test design techniques: black-box and white-box techniques.

1.1.1 Black-box testing

The black-box test design technique concentrates on testing the functionalities
and requirements of the software without having any knowledge on the structure
of the program. The techniques take the software as a black box, examine “what”
the program does and do not intrerested in the “how?” question. The black-
box techniques test the software against some specification. The input and
preconditions of the test cases are determined from some specifications of the
program, and whether the test case is executed successfully or not depends on
the similarity between the expected output and postconditions of the test case
and the actual output and postconditions of the test case execution.

Black-box Testing is one approach for automated functional testing in TV
and multimedia technology. It contains both software and hardware components
offering a wide range of possibilities for testing of integrated DTV systems,
digital satellite and terrestrial receivers (set-top-box - STB), DVD and blu-ray
players. It can be used for testing of video and audio quality, measurement
of electrical values characteristic for AV signals, automated navigation through
menus, for providing signal feeds, performing capturing and displaying of video
and audio content, for storage of test results in various formats in a file system
or database, generating test reports, etc.

As it is intended for functional testing, it ignores internal mechanisms of the
system or component and focuses specifically on the outputs generated as the
system response to specific inputs and conditions of test execution.

Execution of tests can be manual, semi-automatic and automatic tests, and
tests can be carried out in reference systems (SUT against golden reference sys-
tem) and in systems without a reference device (comparison against previously
captured referent AV files).

In this approach, different types of input devices (generators), one or more
SUTs (System Under Test), and audio/video grabber devices are used. Flexible
concept is needed to expand the functionality of devices through expansion and
modification of devices parameters and commands.

For this purpose, available equipment which user possesses in-house can be
used, such as: AV signal generators (Fluke, Quantum, AudioPrecision, and other
supported devices), acquisition devices (grabber cards), RC (Remote Controller)
emulators (RedRat), instrumentation for electrical measurements, and power
supplies (Agilent, Hameg, Tektronix, etc.).

Software part of Black Box Testing is a PC based application for control,
development and execution of automated tests. The application is installed
on a PC and can be connected with all the generators through interfaces they
support (RS232, LAN, USB, GPIB, etc.). The application allows sending of
specific commands to adjust parameters of the generated signal. The application
can also send commands to the SUT (over RC emulator, RS-232, LAN, etc.)
bringing it into a desired state, required by a test scenario (e.g. quality of
image brightness on CVBS input), followed by acquisition of video signal by
the dedicated grabber device. Later on, the test continues with analysis of
the captured SUT output against previously defined audio or picture references
(,golden reference”), grabbed from the referent device, using defined algorithms
for video or audio quality assessment. Thus, the results of the test are obtained
based on a defined limit of deviation of the grabbed sequence compared to the
reference.

Types of testing in Black Box Testing:
e Manual testing

e Semi-automatic testing

e Automated testing

Manual testing requires that all steps of the test are carried out manually by
tester, in accordance with the description given in the test scenario. Application
in a step by step manner displays messages with description of each step that
needs to be carried out; upon the step execution the tester resumes the test until
all test steps are accomplished. At the end the application prompt window pops
up with a question on the test result, including a field where the tester can enter
a comment. Evaluation of the results is performed post-run by a professional
based on visual observations. The major differences between semi-automatic
and automated testing are that at the former the tester decides on the result
of the testing (like in manual tests) and the system performs automatic control
and management of deployed devices, whereas at the latter algorithms built into
test system makes decision on the test results. In the case of automated tests
the criteria for decision making (PASS, FAIL and others) are set by the test
requirements. The criteria are forwarded to the test management mechanism
built into the control application as a parameter used to settle on whether the
test passed or failed. Automated testing of integrated DTV systems presumes
functional testing of supported interfaces. Devices generating video and audio
content, intended for testing of each specific interface are connected to SUT,
which performs post-processing of the content. After the actions of the prede-
fined test scenario are accomplished the resultant SUT output is grabbed from
the TV motherboard and its content is verified against the reference. Using
additional analogue and digital generators RF functionality test can also be
covered. Control emulators fitted for the specific DTV producer enables auto-
matic navigation and setting of TV menu options (brightness, color, sharpness,
volume, etc.).

Three different oracles:

e Golden reference testing - at this type of testing, referent AV content
(golden reference) used to compare grabbed images and audio against, is
known in advance. Referent AV content is usually obtained by recording
of AV output from the referent device which had been approved to op-
erate reliably. Another option for creating of referent AV content is by
using image and audio editors. Upon the tests’ execution, grabbed files
are compared against the references from the device considered to be the
referent one, based on which pass/fail test criteria had been set.

e Golden device testing - at this type of testing, during the testing itself,
SUT outputs are compared against outputs from the device declared as
“golden device”. AV outputs from both devices are captured “live” (at test
run time) and compared by an algorithm which decides on the test success
(pass/fail).

e Testing without reference - when the testing is performed without a refer-
ent device or previously recorded referent files, this technique can be used.
It is based on algorithms for image and audio processing for real time de-
tection of MPEG like artifacts and artifacts caused by signal broadcast.
Most commonly detected artifacts are blocking, blurring, ringing, and field
loss for video, and signal absence and discontinuities for audio signals.

1.1.2 White-box

The difference between white-box testing and black-box testing is that while
black-box testing concentrates on the question “What does the program do?”,
and has no information about the structure of the software, white-box testing
examines the “How does the program do that?” question, and tries to exhaus-
tively examine the code from some aspects. This exhaustive examination is
given by a so-called coverage criterion. The code gets executed during testing
of the program to measure coverage.

There are two main types of white-box coverage criteria:

e Instruction coverage defines that program points should be executed dur-
ing the tests. What a program point means is dependent on many factors
like granularity (it can be sole instructions, basic blocks, methods, classes,
modules, etc.).

e Branch coverage defines how different program paths should be executed
or different decisions should be exercised during the tests. Of course, it is
dependent on the definition of program point: on instruction level we can
examine decisions, or even parts of the decisions (e.g. condition coverage);
while on method level the call graph paths can be examined.

The coverage information somehow should be extracted from the test exe-
cution. There are many possibilities to do this:

e Trace generation is an important part of the white box testing. It means
the code parts that are reached during the execution of a test case. To cal-
culate traceability and coverage we need to follow the run of the program.
Instrumentation and debugging can provide this following by inserted feed-
back points.

e Code instrumentation is inserting instructions that output some informa-
tion about the interesting points of the executed code. The information
content and the interesting points are vary depending on the coverage
level and criterion. For example, a simple method coverage requires only
a binary “I was executed” information at the beginning of each methods,
while condition coverage requires to output the value of all elementary
condition of an executed decision, and the code providing this informa-
tion needs to be inserted into all decisions (thus all decision points needs
to be instrumented). This instrumentation can be made in source code or
in binary code.

e Instrumenting the middleware can be a good solution if we use one mid-
dleware for many programs, and we want to get information from all the

programs. The middleware lies between the hardware and the operating
system, and it is built up from libraries and drivers. If we insert meth-
ods into this middleware which send back information from the execution,
than we can collect some kind of information.

e Modifying execution framework (virtual machine) by extend the code of
the framework. This is a software layer between the executable binary
code and the operating systems. It is an environment in which special
binary can be executed. Special binary is an intermediate language which
is typically compiled from simple source code. We can use call trace which
consists of information of called method.

e Debugging can be made in hardware level, and we need to have debug port
in the hardware or a debugger device, which can communicate with the
hardware in common ports. The debugger can read the code in the hard-
ware and can insert breakpoints into it and can store additional code or
contact to other devices which stores additional code. When the trap in-
struction is encountered, a software interrupt is generated. The additional
instrumentation code may then be executed. After it, the original instruc-
tion content is restored. Debuggers provide very detailed information on
the program execution.

These coverage information can be used to manipulate the executed test set:
we can select from the test cases to reach a special aim, or we can prioritize
them to reach a chosen coverage on the code in a shorter time. Other usage of
the coverage information is to calculate other property of the test cases or the
code.

Traceability is the ability to link product documentation requirements back
to stakeholders’ rationales and forward to corresponding design artifacts, code,
and test cases. Traceability can be computed based on the connection between
the functionalities, the test cases and the coverage information.

Reliability provides an estimation of the level of business risk and the like-
lihood of potential application failures and defects that the application will
experience when placed in operation. We can calculate the reliability from the
possible locations of the faults, which can be ascertained from the coverage and
traceability information.

1.2 Difficulties of Embedded Systems Testing

In this section the most experienced difficulties in embedded systems testing are
depicted.

A primary characteristic of embedded systems is the variety of available
platforms for developers, like the different CPU architectures, their vendors,
operating systems and their variants. These systems are not general-purpose
designs, by definition. Typically, they are designed for a specific task, so the
platform is specifically chosen to optimize that kind of application. Having this,
the consequences are more difficulties for embedded system developers, harder
debugging and testing, since different debugging tools are required for different
platforms [1].

The development of embedded systems is more focused on testing and system
evaluation than desk-top systems. In embedded systems, errors and failing

behaviour can stay unnoticed for quite a while, only until things like service
failure or a device which is not responding appear in embedded systems. Of
course, these errors and failures can be corrected on time, so that no problems in
systems occur. In order to achieve this behaviour, or to at least improve a certain
systems behaviour, it is necessary to follow through with system monitoring and
to analyze the system post-mortem [48§].

Embedded systems have become widely spread and popular, controlling a
vast, variety of devices. For functional and error correctness validation of these
systems, the most commonly used method is software testing. Effective testing
techniques could be helpful in improving dependability of embedded systems,
and therefore developing such testing techniques can be a challenge [60].

Embedded systems consist of software layers. Application layers utilize ser-
vices provided by underlying system service and hardware support layers, while
a typical embedded application consists of multiple user tasks. System failures
in field applications can be caused by two different kinds of interactions, those
that occur between application and lower layers, and those that occur between
various user tasks initiated by the application layer. In embedded systems, a
particularly difficult problem in the testing domain can be the “Oracle problem”.
Oracle automation is complicated by the uncertain determination of expected
outputs, for given inputs. This can occur due to the multiple tasks which could
have a non-deterministic output.

There are many different classes of real-time embedded systems. For exam-
ple, hard real-time embedded systems have strict temporal requirements, and
include safety critical systems such as those found in avionics and automotive
systems. Soft real-time embedded systems, in contrast, occur in a wide range
of popular but less safety-critical systems such as consumer electronic devices,
and tend not to have such rigorous temporal constraints.

Since embedded systems are usually real-time systems as well, its correct-
ness of execution is not only characterized by its logical correctness, but by
moment when the result is produced as well, especially in the case of hard real-
time systems. Thus, not only when the expected result is missing, but also
when the expecting result is produced but outside the period defined by timing
constraints, the system is considered as failing.

As the failing behaviour is not acceptable for many embedded systems,
specifically safety-critical systems, the testing of meeting timing constraints is
equally important as testing functional behaviour of these systems.

Some characteristics of embedded world are making the testing process of
embedded systems slightly different than testing systems use in other fields:

e Platforms for execution and running application are usually separately
developed

e Wide spectre of development architectures

e Cross-development environments impacted by existence of a number of
execution platforms

e Limited resources and tight space for timing constraints on the platform
e Implementation paradigms can be diametrically different

e Frequently unclear design models

e New quality and certification standards

Testability and measurability of an embedded system is often affected by
these issues, what is the main reason for testing such systems to be so difficult
and thus considered as the weakest point of development process. Having this
in mind, it is natural that more than 50 percent of total development effort is
spent in testing embedded systems, especially the systems which development is
months behind the expected schedule, which is also more than 50 percent [21].

Having complex embedded designs with frequently changed requirements,
the testing of real-time embedded systems is particularly difficult. They usually
require a number of rigorous white-box (structural) and black-box (functional)
testing modules, as well as the integration testing before releasing them to mar-
ket. The functional testing is usually more important than structural, and sim-
ilarly, the integration testing is more challenging task than module testing, and
even more, functional integration testing requires separate test scripts generated
based on the system requirements [58].

2 Search methodology

To collect valuable information for this survey paper we searched for previ-
ous works (papers and tools) connecting black-box and white-box techniques
(so called gray-box testing), or applying such techniques in embedded systems
environment,.

As a first step, we collected in-house knowledge: created a list of relevant
papers and tools that had been reviewed or applied in previous research and
development activities. Next, Google and Google Scholar searchers were used to
find scientific articles and case studies. We started to search with basic terms as
“graybox”, “gray box”, “gray-box”, “graybox testing”, “graybox process”, “graybox
testing process”. Unfortunately, the found articles showed that these terms are
widely used but note not only those techniques we are interested in. As a result,
very few relevant papers were found. The next terms we were searching for
were “whitebox helped blackbox testing” and “whitebox aided blackbox testing”.
These searches also resulted in a huge number of hits. By filtering out irrelevant
ones, many papers were left. Unfortunately, after processing these papers we
had to realize that most of them concentrated on the results of applying such
methods and not on the elaboration or explanation of the testing processes they
used.

At this point we narrowed search by making the search terms more specific
to the R&D activity we wish to perform. As code coverage is decided to be
used in the project, we started to search for “coverage aided blackbox testing”
and “coverage aided testing”. There were much less hits than with the previous
more general search terms, but finally these papers are found to be very relevant
ones.

After trying to find complex papers and solutions that fit to our goals, we
started to collect relevant information one by one to the following terms: “white-
box testing”, “code coverage”, “instrumentation”, “model-based testing” and “em-
bedded system testing". With these term we found a huge amount of articles,
papers, reports, tools and case studies. The first selection were based on the ab-
stracts on the papers. The introduction and conclusion sections of the selected

papers were read, and those papers that were not proved to be interesting were
filtered out.

Later, as the goal of the R&D activity became clearer, we added “test gener-
ation” as a search term, which resulted in works mostly concerning model based
testing, random testing, automative test generation, symbolic execution, and
some processes that use them.

As testing and debugging are close to each other (although they are differ-
ent activities, both debugging and white-box testing are based on the program
code and deals with execution data), “embedded system debug” terms were also
searched and a few relevant papers were found.

We also processed the reference lists of the relevant papers we found. These
referred to articles usually describing the basics of some techniques, or to dif-
ferent tools that utilize the described technique.

As the last step, tools supporting automatic test generation and/or test
execution are searched and processed. Search terms that were included for
this purpose were “automated test generation tool”, “automated test execution
tool”, and “integrated test generation and test execution tool”. Large amount
of tools were found using these terms, and later filtered by selecting some of
them according to given short descriptions and specifications. In order to get
more precise information and to improve assessment of selected tools, more
detailed documents addressing these tools (e.g. specifications, tutorials, etc.)
were searched and processed.

At the last phase of tools assessment, still missing information of key impor-
tance for later evaluation and comparison of examined existing solutions, were
searched by combining terms describing the information with the tool name.
For some tools, when none of described method gave us the information, the
tool was tried out using free (academic) licences or versions that are free for
evaluation in the case they existed.

3 Classification and evaluation criteria

To evaluate and classify, and especially to compare the previous works, we had
to set up some criteria.

At the beginning, we started to evaluate the articles without any fixed points
of view. After processing some relevant papers, we compared their content and
tried to list similarities and differences. This list were the base of setting up the
classification and evaluation criteria.

Classification of methods/evaluation criteria:

input type Gives the input of the evaluated method. It can be a model, the
source code, the binary, or various other representations of the system
under test.

output/result Gives the output and/or result of the evaluated method. It can
be a set of new or selected test cases, prioritization of test cases, coverage
information, test execution results, or many other things, depending on
the type of the method.

programming language This criterion denotes whether the evaluated method
is specific to some programming languages or language families, or it is

general in the means that could be (even if actually it is not) applied to
any programming languages.

implemented /tool support This indicates whether the method is implem-
ented fully or partially, or there are tools that supports this method.

applied in real environment An important property of a method is whether
it is purely theoretical and works only for “toy” programs/environments, or
it has been applied and its applicability has been proven in real scenarios.

specific to embedded systems Whether the evaluated method is specific to
embedded systems environment, or it is general and can be effectively used
not only in embedded systems.

use some coverage measure Indicates whether the method uses some kind
of coverage values (e.g. code or functional coverage) as input.

computes some coverage measure Indicates whether the method computes
some kind of coverage values (e.g. code or functional coverage) as output.

instrumentation technique If instrumentation is used in the method, this
point gives the instrumentation technique (e.g. source code, binary, etc.)

requires source code Indicates if the method requires the source code of the
system under test, or works from some other test basis.

BB testing method(s) This point indicates the general black-box testing meth-
ods that are specialized in the evaluated solution.

makes prioritization/selection This indicates whether the method includes
some test case prioritization and/or selection functionalities, and shows
what kind of selection / prioritization is used.

prioritization/selection based on Shows the base measure or data of the
used test case prioritization/selection techniques (e.g. extent of code cov-
ered, time required for execution, etc.).

4 Assessment

In this section a detailed assessment of relevant papers and tools can be found.
We separately evaluate black-box, white-box, and gray-box techniques and tools.
At the end of the free-format evaluation of a paper, we give the answers to the
classification and evaluation criterion in a table.

4.1 Black-box

In this section papers describing some black-box testing methods/activities are
assessed. The focus is on those techniques that are more frequently or can more
probably be used in embedded system testing.

10

Graph Transformations for Model-based Testing [13]

This paper presents an extended heuristic and a generic implementation of
the classification tree. It uses the classification-tree transformer (CTT) tool to
accomplish.

The classification-tree method is an instance of partition testing where the
input domain of the test object is split up under different aspects, usually corre-
sponding to different input data sources. The different partitions, called classi-
fications, are subdivided into (input data) equivalence classes. Finally different
combinations of input data classes are selected and arranged into test sequences.

The CTT tool needs the raw classification tree (as a model made in Mat-
lab/Simulink /Stateflow; raw classification trees are automatically created by
the model extractor) as input from the model-based development, and pro-
vide a complete classification tree. Then this complete tree can be used to
generate model-based test scenarios by exploration. This extension is a tree-
transformation with class definitions to partition the value space of input signals.
For this test design step a number of heuristics have been developed which led
to further automation steps:

e Data type related heuristics: e.g. the classification of a Boolean signal is
set up by two classes true and false or enumeration types are classified by
setting up a class for each enumeration value.

e Problem-specific partitioning heuristics: e.g. there is an interval of a vari-
able’s values, but there is a distinguished range of it, and a functionality
can’t be launch if the actual value is out of this range.

e General testing heuristics.

Besides, further tree transformations may be applied for structure refinement
to simplify the tree. The transformation rules must be collected in sets to build
up a library of test heuristics which can provide tree extension rules for specific
application domains or different projects.
This paper mentioned that if we use some proper form of coverage we can
generate more sensible inputs for the tests, but did not elaborate on details.
This approach is common in the embedded system development.

input type Matlab /Simulink /Stateflow model
output/result complete classification-tree
programming language PROGRES

implemented /tool support yes, the CTT tool supports it
applied in real environment yes

specific to embedded systems yes

use some coverage measure no

computes some coverage measure | no

instrumentation technique no

requires source code no

BB testing method(s) model-based

Makes prioritization /selection no

Model based software testing [20]
This article shows and explains the main streams of the model-based testing.

11

Useful models in software testing:

e Finite-state machines:

Finite state machines are applicable to any model that can be accurately
described with a finite number (usually quite small) of specific states.

A common scenario: the tester selects an input from a set depending on
the prior results. At any given time, a tester has a specific set of inputs
to choose from. This set of inputs varies depending on the exact "state"
of the software. This characteristic of software makes state-based models
a logical fit for software testing.

e State charts:
State charts are specifically address modeling of complex or real-time sys-
tems. They provide a framework for specifying state machines in a hierar-
chy, where a single state can be “expanded” into another “lower-level” state
machine. It involves external conditions that affect whether a transition
takes place from a particular state, which in many situations can reduce
the size of the model being created. State charts are probably easier to
read than finite state machines, but they are also nontrivial to work with.

e UML:
The unified modeling language models replace the graphical-style repre-
sentation of state machines with the power of a structured language. It
can describe very complicated behavior and can also include other types
of models within it.

e Markov chains:
Markov chains are stochastic models and they are structurally similar to
finite state machines and can be thought of as probabilistic automaton.
Their primary worth is generating tests and also gathering and analyzing
failure data to estimate such measures as reliability and mean time to
failure.

e Grammars:
Different classes of grammars are equivalent to different forms of state
machines. Sometimes, they are much easier and more compact represen-
tation for modeling certain systems such as parsers. They are generally
easy to write, review, and maintain.

e Other: see in [16]

It gives proper terminology and examples, make a review of the MBT’s
role. It’s aim to give an approach to the reader about the model-based testing
methods and its functionality.

This paper not deals with coverage criteria, but tells some form of coverage
that can be reached by MBT. The methodology not needs the source code to
work. It needs only some kind of model. It can be applied widely in software
development.

12

input type some kind of model

output/result usually test cases, scenarios

programming language none

implemented /tool support many tools supports

applied in real environment, yes

specific to embedded systems no, but also used there

use some coverage measure not common

computes some coverage measure | model, path coverage

instrumentation technique no

requires source code no

BB testing method(s) model-based, sometimes with random
inputs

Makes prioritization /selection no

MaTeLo: Automated Testing Suite for Software Validation [29]

This paper presents the MaTeLo software, a model-based functional testing
device, and its advantages, options and objectives. The developers not meant to
make a device that fully tests a system, but to test a system to make it usable
in the future without defects.

This device containing the follow issues:

selecting relevant test cases:

MaTeLo is generating the Test Suite from the Usage Model. The Test
Suite can be analyzed by the MaTeLo system with a report generation, in
order to generate a relevant Test Suite.

giving the acceptance criteria of the testing and definition of a test stop-
ping criteria:

MaTeLo supports project manager to manage the test campaign. He will
use the report’s functions of MaTeLo to foresee the end of the project
and so the delivery date of the system for customers. For tests, MaTeLo
stores the model and computes some coverage criteria to give the satisfying
conditions.

helping the different development strategies:

The industry is heightened at different stages regarding testing, and the
MaTeLo project is committed to promote the use of statistical tools &
methods to answer European industries’ needs.

test automation:

MaTeLo provide support to build the software test plan and generate the
usage model, than generate the test suite from it. MaTeLo provides the
capability of automatic execution of test suite and stores test results in a
database to allow further analysis.

It uses Markov-chains to generate test cases, because these give the proper
user behavior models. The states of the Markov-chain represents the states of
the system and the transitions in the Markov-chain refers to the user actions,
so the state-changes in the system.

13

The MaTeLo contains many options to enhance model-based functional test-
ing. It can provide the usage model from the specification, generate test cases
from it in TTCN-3 or textual formats, and calculate coverage on specification

and model level.

input type some kind of model
output / result test cases, scenarios
programming language TTCN-3
implemented /tool support it is a tool

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure

specification, arc and state

instrumentation technique

no

requires source code

yes

BB testing method(s)

Markov-model-based

Makes prioritization /selection

can make selection

Automatic test case generation from requirements specifications for
real-time embedded systems [15]

In this paper, the authors present a method to generate test cases, using
the requirements specifications for event-oriented, real-time embedded systems.
The requirements documentation and test case generation activities make up
the initial steps in their method to realize model-based codesign. This code-
sign method relies on system models at increasing levels of fidelity in order to
explore design alternatives and to evaluate the correctness of these designs. As
a result, the tests that we desire should cover all system requirements in order
to determine if all requirements have been implemented in the design. The set
of generated tests will then be maintained and applied to system models of in-
creasing fidelity and to the system prototype in order to verify the consistency
between models and physical realizations.

In this codesign method, test cases are used to validate system models and
prototypes against the requirements specification. This ensures coherence be-
tween the system models at various levels of detail, the system prototype, and
the final system design. Automating the test case generation process provides a
means to ensure that the test cases have been derived in a consistent and objec-
tive manner and that all system requirements have been covered. The goal is to
generate a suite of test cases that provide complete coverage of all documented
system requirements.

The paper contains a simple example of a controller for a safety injector of
a reactor core. The system monitors pressure and adds coolant if the pressure
drops below a given threshold.

The difficulty of this problem has been discussed in this paper and a heuristic
algorithm is presented to solve the problem.

14

input type requirements specification
output/result test suite

programming language C

implemented /tool support yes

applied in real environment, no

specific to embedded systems yes

use some coverage measure yes

computes some coverage measure | no

instrumentation technique -

requires source code yes

BB testing method(s)

specification based

can make selection
specification

Makes prioritization /selection
Prioritization /selection based on

Automatic test generation: a use case driven approach [45]

The authors propose a new approach for automating the generation of sys-
tem test scenarios from use cases in the context of object-oriented embedded
software and taking into account traceability problems between high-level views
and concrete test case execution. The method they develop is based on a use
case model unraveling the many ambiguities of the requirements written in nat-
ural language. They build on UML use cases enhanced with contracts (based on
use cases pre- and postconditions). The test objectives (paths) generation from
the use cases constitutes the first phase of their approach. The second phase
aims at generating test scenarios from these test objectives. The test cases are
generated in two steps: Use case orderings are deduced from use case contracts;
and then use case scenarios are substituted for each use case to produce test
cases. While in the first step the use cases model handles high level concerns,
in the second step, the data complexity (numerical data, object models, OCL
constraints, etc.) is taken into account with the use of use case scenarios. The
approach has been evaluated in three case studies by estimating the quality of
the test cases generated by their prototype tools.

input type UML use cases
output/result test suite

programming language C++

implemented /tool support implemented, but no tool
applied in real environment, yes

specific to embedded systems yes

use some coverage measure use case coverage
computes some coverage measure | -

instrumentation technique -

requires source code (yes/no) no

BB testing method(s) model-based
Makes prioritization /selection -
Prioritization /selection based on | -

A Test Generation Method Based On State Diagram [39]
This paper aims to resolve the following research issues:

15

e minimize size of test cases and test data derived from extended state chart
diagram,

e maximize a number of nodes coverage, and
e minimize total time of test case generation from diagrams.

The paper proposes an effective method to prepare and generate both of test
cases and test data, called TGIMMD method. The TGfMMD method is devel-
oped to verify the state chart diagram before generation and generate both of
test cases and test data from extended state chart diagram. The extended state
diagrams is a Mealy Machine diagram. The Mealy Machine diagram is extended
from the UML state diagram. Both of these diagrams are used to describe the
behavior of systems but differ in the sense of Mealy Machine diagram has input
and output while normal state diagram does not have.

input type state diagram
output/result test cases
programming language -

implemented /tool support TGfMMD

applied in real environment, no

specific to embedded systems no

use some coverage measure state diagram coverage
computes some coverage measure | diagram
instrumentation technique no

requires source code no

BB testing method(s) method based

Makes prioritization /selection selection

Prioritization /selection based on | state diagram coverage

A Practical Approach for Automated Test Case Generation using
Statecharts [52]

This paper presents an approach for automated test case generation using a
software specification modeled in Statecharts. The steps defined in this approach
involve: translation of Statecharts modeling into an XML-based language and
the PerformCharts tool generates FSMs based on control flow. Statecharts ex-
tend state-transition diagrams with notions of hierarchy (depth), orthogonality
(parallel activities) and interdependence/synchronization (broadcast communi-
cation). Statecharts consist of states, conditions, events, actions and transitions.

These FSMs are the inputs for the Condado tool which generates test cases.
A case study was on an implementation of a protocol specified for communi-
cation between a scientific experiment and the On-Board Data Handling Com-
puter of a satellite under development at National Institute for Space Research
(INPE). The approach was applied on a simulated version of a satellite experi-
ment software. The results were satisfactory.

16

input type Statechart
output/result test cases
programming language C++
implemented /tool support implemented, but no tool
applied in real environment, yes
specific to embedded systems no

use some coverage measure no
computes some coverage measure | no
instrumentation technique no
requires source code no

BB testing method(s) -

Makes prioritization /selection -
Prioritization /selection based on | -

Testing Concurrent Object-Oriented Systems with Spec Explorer [9]

The basics of the SpecExplorer is the interface automaton [3], which separates
the input and the output edges in the nodes and uses FIFO structure to explore
the input model. SpecExplorer discovers the specification (high-level or source
code) to build the interface model and than explores it to build the model which
will be the basis of the test case generation. SpecExplorer can create not only
fix scenarios but dynamic or infinite ones as well (e.g. chat servers) and can
choose series of method calls which do not violate the system’s operation and
which are relevant for the users’ test inputs.

It uses the next two methods for simplify the infinitive systems:

e grouping statuses: merge the statuses which are indistinguishable in a user
define aspect;

e state-dependent parameter generating: defines parameter-intervals which
can help us to select the proper input values.

The result graphs can use as oracles. To solve the branches SpecExplorer
use Markov-decision logic. With this, it can provide a good path and model
coverage.

input type specification or model

output/result test scenarios or a graph

programming language C#, .NET

implemented /tool support Visual Studio 2010 Ultimate and above,
SpecExplorer

applied in real environment yes

specific to embedded systems no

use some coverage measure behavioral, branch

computes some coverage measure | code

instrumentation technique .NET assembly level, binary inst.

requires source code yes

BB testing method(s) Markov-model-based

Makes prioritization/selection can make both

Prioritization /selection based on | some user-defined aspect

17

Unit Tests Reloaded: Parameterized Unit Testing with Symbolic Ex-
ecution [53]

We can find proper inputs for parametrized unit tests (PUTSs) during sym-
bolic execution thus we can reach high model coverage and in some case we can
look this PUTs as specification. During symbolic execution we explore the sym-
bolic variables and develop them with proper values. The symbolic variables
are mathematical structures that contains every variable from above in the path
which the symbolic variable depends on.

PUTs can be provided from existing unit test or we can write brand news
from the implementation.
In this paper these tools mentioned as providing symbolic execution:

e Java PathFinder with some extensions,
e NET XRT.

The next two device was developed by Microsoft Research for automatic
unit test generation: UnitMeister and AxiomMeister. These devices can make
new PUTs from implementation, parametrize existing UTs and refactor existing
PUTs. The symbolic variables are expressions over the input symbols. The
symbolic execution builds up a dependency path between the variables thus it
can compute the values for all the variables by choosing the proper input values.
these dependency paths can contain junctions (so we call them trees more than
paths) and the tree-exploration or tree-execution makes as much UTs as the
number of the branches.

We can specify the minimal number of test scenarios by define the proper
inputs so these scenarios can cover all the paths. A path is inappropriate if we
can’t find input for it. For example it will newer be chosen or in the branch
the value is always false, etc. In this case we can drop this branch even from
the system. The symbolic execution unfolds all the loops and recursions, so
it can provide infinite number of paths. For prevent this, we can use several
techniques. One of these is if we can give a number for limitation for running
the loops by analyzing the behavior of the loops and gives a maximum number
of the execution of the loop. We can use mock objects for imitate the behavior
and functions of the software components. Though the mock objects contains
only a slice of the functionalities, if we can generate these automatically, we can
have unlimited number of mock objects, each with different functionality.

For this case the symbolic mock objects are the best choices. In these objects
the functionalities are specified like the values of the symbolic variables (in de-
pendency trees). We can represent each procedure calls result by mock objects.

18

input type

any kind of unittests or implementation

output/result

Parametrized Unit tests

programming language

Java, NET

implemented /tool support

PathFinder, XRT, UnitMeister, Ax-

iomMeister

applied in real environment,

yes

specific to embedded systems

no

use some coverage measure

input coverage

computes some coverage measure

model, path coverage

instrumentation technique no

requires source code can use the source code also
BB testing method(s) BB, GB

Makes prioritization /selection BB, GB
Prioritization/selection based on | BB, GB

Feedback-directed Random Test Generation [47]

This paper presents a technique that improves random test generation by
incorporating feedback obtained from executing test inputs as they are con-
structed. Build inputs incrementally by randomly selecting a method call to
apply and finding arguments from among previously-constructed inputs. As
soon as an input is built, it is executed and checked against a set of contracts
and filters. The result of the execution determines whether the input is redun-
dant, illegal, contract-violating, or useful for generating more inputs. Inputs
that create redundant or illegal states are never extended into tests containing
more steps. The technique outputs a test suite consisting of unit tests for the
classes under test in object-oriented systems. This technique is implemented
in RANDOOP, which is a fully automatic system, requires no input from the
user (other than the name of a binary for .NET or a class directory for Java),
and scales to realistic applications with hundreds of classes. It can be efficiently
used in the sparse and global sampling. Inputs created with feedback-directed
random generation achieve equal or higher block and predicate coverage than
the systematic techniques. Feedback-directed random testing does not require
a specialized virtual machine, code instrumentation, or the use of constraint
solvers or theorem provers.

The basics if this technique is that an object-oriented unit test consists of
a sequence of method calls that set up state (such as creating and mutating
objects), and an assertion about the result of the final call. Each method have
input arguments, which can be primitive values or reference values returned by
previous method calls. The feedback-directed random test generation technique
chooses a method randomly from the method list and generating inputs for it.
When the input is generated, the method is executed and measured. If the
result violates any constraint, the methods is dropped. If not, a new method
is chosen from the available set. This set is made up from the methods that
are reachable after the run of the previous one. The technique is iterating these
steps until the program is terminating. The result is a test sequence from valid
method calls and the proper inputs. As soon as a (sub)sequence is built, it is
executed to ensure that it creates non-redundant and legal objects, as specified
by filters and contracts.

RANDOOP takes all these steps automatically and makes a complete test

19

suite of one library by one run.

input type model or source code
output/result test suite+inputs
programming language .NET, Java
implemented /tool support RANDOOP
applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | method
instrumentation technique none

requires source code yes

BB testing method(s) random

Makes prioritization /selection no

Path Oriented Random Testing [28]

Test campaigns usually require only a restricted subset of paths in a program
to be thoroughly tested, so we face the problem of building a sequence of random
test data that execute only a subset of paths in a program based on backward
symbolic execution and constraint propagation to generate random test data
based on an uniform distribution.

Usual white-box testing approaches require only a subset of paths to be selected
to cover all statements, all decisions or other structural criteria.
There are also paths which never will be chosen during the programs operation.

Our approach derives path conditions and computes an over-approximation
of their associated sub-domain to find such a uniform sequence. One key advan-
tage of Random Testing over other techniques is that it selects objectively the
test data by ignoring the specification or the structure of the Program Under
Test. Path testing requires to find a test suite so that every control flow path is
traversed at least once. As every feasible path corresponds to a sub-domain of
the input domain, path testing consists in selecting at least one test datum from
each sub-domain with minimalizing the numbers of rejects in selected inputs. A
reject is produced whenever the randomly generated test datum does not satisfy
the path conditions.

This paper presents and explains the symbolic execution, the constraint
programing, and gives some example algorithms how to calculate path condition
and how to generate path-oriented random test data.

20

input type control flow
output/result test suite

programming language SICStus Prolog, C
implemented /tool support implemented, but no tool
applied in real environment, yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | path coverage
instrumentation technique no

requires source code no

BB testing method(s) model-based, random input
Makes prioritization /selection no

Adaptive Random Testing [10]

Adaptive random testing seeks to distribute test cases more evenly within
the input space. It is based on the intuition that for non-point types of failure
patterns, an even spread of test cases is more likely to detect failures using fewer
test cases than ordinary random testing.

In recent studies, it has been found that the performance of a partition test-
ing strategy depends not only on the failure rate, but also on the geometric
pattern of the failure-causing inputs. This has prompted the authors of this ar-
ticle to investigate whether the performance of random testing can be improved
by taking the patterns of failure-causing inputs into considerati.

This study assumes that the random selection of test cases is based on a
uniform distribution and without replacement. Elements of an input domain
are known as failure-causing inputs, if they produce incorrect outputs. We use
the expected number of test cases required to detect the first failure (referred
to as the F-measure), as the effectiveness metric. The lower the F-measure the
more effective the testing strategy because fewer test cases are required to reveal
the first failure. The patterns of failure-causing inputs have classified into three
categories: point, strip and block patterns. It conjectures that test cases should
be as evenly spread over the entire input domain as possible.

Adaptive random testing makes use of two sets of test cases, namely the
executed set and the candidate set which are disjoint. The executed set is
the set of distinct test cases that have been executed but without revealing
any failure; while the candidate set is a set of test cases that are randomly
selected without replacement. The executed set is initially empty and the first
test case is randomly chosen from the input domain. The executed set is then
incrementally updated with the selected element from the candidate set until
a failure is revealed. From the candidate set, an element that is farthest away
(Euclidean distance) from all executed test cases, is selected as the next test
case. There are also various ways to construct the candidate set.

The authors make an experiment with many kind of open source programs
in variety of programming languages but all programs have converted into C++.

The article gives an example algorithm to show how to generate a candidate
set and select a test cases.

21

input type input domain
output/result test inputs
programming language C++
implemented /tool support it is implemented, but have no tool
applied in real environment, yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | no
instrumentation technique no

requires source code no

BB testing method random
Makes prioritization /selection no

4.2 White-box

In this section, papers that describe methods helping to extract some white-box
coverage measures are assessed.

Observability analysis of embedded software for Coverage-Directed
validation [14]

In this paper the authors propose a new metric that gives a measure of the
instruction coverage in the software portion of the embedded system. Their
metric is based on observability, rather than on controllability. Given a set of
input vectors, their metric indicates the instructions that had no effect on the
output.

The coverage metric being proposed was implemented to handle programs
in the C language. The algorithm was implemented in a two step process. In
the first step they transform the source program by adding for each statement
a call to a function. The parser used was c2c which is a public-domain software
program. c2c works by making an Abstract Syntax Tree (AST) of a C program.
The AST can then be manipulated in several ways such as adding or deleting
nodes in it. Finally, after changing the AST, the c2c tool produces the C
program for that new AST.

In their case, the modifications made are, for each statement, adding one
of several functions to the code. Several functions will process the information
extracted from the statement.

Then, in the second step they compile the transformed program inside a
framework that will allow several input vectors to be run and obtain an overall
estimate of the observability coverage for these vectors. They show four exam-
ples they used to test the observability based metric being proposed. One of
the program computes Fibonacci numbers, one matches a stream of characters
against a string, one computes the Huffman code and the last one implements
the Fast Fourier Transform (FFT). All four were implemented using the C lan-
guage.

This metric has great potential to be used in embedded software testing.
There is significant overhead due to the fact that for each statement, a function
call is made.

22

input type source code

output/result percentage of observed statements
programming language C/C++

implemented /tool support implemented, but no tool

applied in real environment, yes

specific to embedded systems no

use some coverage measure

statement coverage

computes some coverage measure

statement coverage

instrumentation technique

code instrumentation

requires source code

yes

BB testing method(s)

Makes prioritization /selection

Prioritization /selection based on

Flow logic: a multi-paradigmatic approach to static analysis [46]

The flow logic is a formalism of static analysis. It separates when and how:
when an estimation of an analysis is acceptable and how to make the analysis.
It is based in particular on the conventional use-case analysis, border analysis
and abstract interpretation. Definitions in different levels can be specified by
the same formalism. It allows us to use the conventional techniques in static
analysis. This is the basis of using different paradigms in different parts of the
system according to what paradigm gives the best solution.

The specifications of the flow logic are sets of closes. It is necessary to write
these closes co-inductively. An estimation of an analysis is acceptable if not
violates any of the conditions set by the specification. We can reach a good
specification coverage, if selects these kind of analysis.

There are two approaches of the flow logic:

e abstract vs. complex,
e succinct vs. verbose.

The complex specification is syntax-driven, similar to the implementation,
while the abstract specification is close to the common semantics. The verbose
specification reports all the inner flow information like the use-case and the
boarder analysis, while the succinct specification deals only with the top level
estimation of an analysis.

input type source code, implementation, interface
output/result sets of closes

programming language none

implemented /tool support no

applied in real environment, yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | specification

instrumentation technique no

requires source code yes

BB testing method(s)

use-case analysis, border analysis, ab-
stract interpretation

Makes prioritization /selection

no

23

Boundary Coverage Criteria for Test Generation from Formal Mod-
els [40]

This article presents a new area of the model-based coverage criteria, which is
based on the formalism of the boundary-testing heuristics. It can be applied in
every system working with variables and values. It feasible to measure coverage
or to generate test cases. It is implemented in the B-Z-TESTING-TOOLS tool
suite, which is able to generate test cases from B, Z or UML/OCL model.

They tried and suggested a number of coverage metric in the early develop-
ment:

e Transition coverage or transition-pair coverage for transitions represented
in state-chart;

e Constraint coverage for abstract state machines’ behavior-defining con-
straints;

e Disjunctive Normal Form coverage for states in state-based models, like
B, Z, VDM, where predicates provides the behavior.

Besides, there are different analyzing methods to provide the basis for test
generating algorithms, but they aren’t used as coverage metrics. One from these
is the boundary-analysis. The boundary coverage is independent from the struc-
ture, so it can be an extension for it. It’s suitable for selecting or extending the
test cases generated from structural coverage. This BZ-TT tool suite have spe-
cial possibilities to efficiently implement the boundary value computing method,
and it is commonly used for smart cards and in transport systems. The formal
model used by the BZ-TT is assembled from variables and predicates and can
be created from any kind of formal specification.

This article gives a formal definition for the boundary values, the boundary
coverage, and a test selection algorithm, and gives a particular formal example.

input type formal model
output/result boundary coverage value
programming language B, Z, VDM, UML/OCL
implemented /tool support implemented in BZ-TESTING-TOOLS
applied in real environment yes

specific to embedded systems partly

use some coverage measure no

computes some coverage measure | boundary
instrumentation technique no

requires source code no

BB testing method(s) no

makes prioritization/selection can make selection
Prioritization/selection based on | boundary coverage

A Dynamic Binary Instrumentation Engine for the ARM Architec-
ture [31]

Dynamic binary instrumentation (DBI) is a powerful technique for analyz-
ing the runtime behavior of software. There are numerous DBI frameworks for
general-purpose architectures, but for embedded architectures are fairly limited.

24

This paper describes the design, implementation, and applications of the ARM
version of Pin.

ARM is an acronym for Advanced RISC Machines. Most implementations
of the ARM architecture focus on providing a processor that meets the power
and performance requirements of the embedded systems community.

Pin is a dynamic binary rewriting system developed by Intel. It allows a
tool to insert function calls at any point in the program and automatically
saves and restores registers so the inserted call does not overwrite application
registers. At the highest level, Pin consists of a virtual machine (VM), a code
cache, and an instrumentation APT invoked by Pintools. The VM consists of a
just-in-time compiler (JIT), an emulator, and a dispatcher. The JIT compiles
and instruments application code, which is then launched by the dispatcher.

Since Pin sits above the operating system, it can only capture user-level code.
It uses a code cache to store previously instrumented copies of the application
to amortize its overhead. Code traces are used as the basis for instrumentation
and code caching.

Pin provides transparency to any application running under its control. All
memory and register values, including the PC, will appear to the application as
they would had the application been run directly on the hardware.

To ensure that the VMmaintains control of execution at all times, and control
never escapes back to the original, not instrumented code, all branches within
the cached code are patched and redirected to their transformed targets within
the code cache.

From an ISA standpoint, system calls do not present any particular problem
in Pin for ARM, since they can be executed directly without further intervention
from Pin. However, in order to stay in control of the application under all
circumstances, some system calls must be intercepted and emulated instead.

Superblocks (single-entry, multiple-exit regions) are used as the basis for
instrumentation and code caching in Pin. Just before the first execution of a
basic block, Pin speculatively creates a straight-line trace of instructions that
is terminated by either an unconditional branch, or an instruction count limit.
One ARM-specific trace selection optimization we explored was to limit trace
lengths to a fixed maximum number of basic blocks. This optimization reduces
the tail duplication resulting from caching superblocks.

A major challenge in many dynamic instrumentation systems is self-modifying
code (SMC). Any time an application modifies its own code region, the instru-
mentation system must be aware of this change in order to invalidate, regenerate,
and re-instrument its cached copy of the modified code. The real problem is the
efficient detection. Fortunately, architectures such as ARM contains an explicit
instruction that must be used by the software developer in order to correctly
implement SMC.

After these, the article shows a performance analysis to Pin for ARM. Finally
it lists out the potential applications.

25

input type embedded system
output/result instrumented system
programming language C

implemented /tool support implemented in Pin for ARM
applied in real environment, yes

specific to embedded systems yes

use some coverage measure no

computes some coverage measure | no

instrumentation technique binary

requires source code no

BB testing method(s) none

Makes prioritization /selection no

Automated Formal Verification and Testing of C Programs for Em-
bedded Systems [36]

This paper introduces an approach for automated verification and testing of
ANSI C programs for embedded systems. Automatically extract an automaton
model from the C code of the system under test. This automaton model is used
for formal verification of the requirements defined in the system specification,
and we can derive test cases from this model by using a model checker, too. This
paper specifically shows how to deal with arithmetic expressions in the model
checker NuSMV and how to preserve the numerical results in case of modeling
the platform-specific semantics of C.

In this paper the verification of the SUT is realized in two important inde-
pendent steps:

e In the first step the platform-independent semantics of the system can be
verified formally by model checking. By verifying all requirements from
the specification, it can be shown that the C program conforms to the
specification. Verifications are done with X-in-the-loop method.

e The second step is testing the system by execution of test cases on the
target platform. It proves whether the platform-specific semantics of the
program has the same behavior as the model. Test cases are generated by
model checking from the automaton model.

Every step is done in Matlab Simulink.

The model extraction is done in the following steps: (1) The C-source code
is parsed and by static analysis, the syntax tree of the program is generated.
(2) The syntax tree is used to generate the automaton model by sequentially
processing it and interpreting the semantics of the basic statements. (3) The
description of the automaton model is given in an automata language.

For the formal verification of the system the properties from the specification
have to be translated into temporal logic formulas. These formulas can be veri-
fied on the model with a model checker. Some properties from the specification
are suitable to be checked directly on the extracted model.

For the test case generation we also use model checking techniques. The
main purpose of a model checker is to verify a formal property on a system
model. In case that the formal property is invalid on a given model, a model
checker provides a counterexample, which describes a concrete path on which

26

the property is violated. This feature of a model checker can be used to generate
test cases in a formal and systematic way. For finding suitable test cases the
challenge is to find appropriate properties (trap properties), that yield specific
paths that can be used as test cases.

input type specification
output/result test cases and verification information
programming language C

implemented /tool support NuSMV
applied in real environment yes

specific to embedded systems yes

use some coverage measure no

computes some coverage measure | no
instrumentation technique none

requires source code no

BB testing method(s) model checking
Makes prioritization/selection no

Using Property-Based Oracles when Testing Embedded System Ap-
plications [61]

As prior work in this paper an approach for testing embedded systems is
presented, focusing on embedded system applications and the tasks that com-
prise them. This article focuses on a second but equally important aspect of
the need to provide observability of embedded system behavior sufficient to al-
low engineers to detect failures. It presents several property-based oracles that
can be instantiated in embedded systems through program analysis and instru-
mentation, and can detect failures for which simple output-based oracles are
inadequate.

The authors presented an approach in this paper to help developers of em-
bedded system applications detect faults that occur as their applications interact
with underlying system components. This approach involves two dataflow-based
test adequacy criteria. First, we use dataflow analysis to identify inter-layer
interactions between application code and lower-level (kernel and hardware-
related) components in embedded systems. Second, we use a further dataflow
analysis to identify inter-task interactions between tasks that are initiated by the
application. Application developers then create and execute test cases targeting
these interactions.

The “oracle problem” is a challenging problem in many testing domains,
but with embedded systems it can be particularly difficult. Embedded sys-
tems employing multiple tasks that can have non-deterministic outputs, which
complicates the determination of expected outputs for given inputs. Faults in
embedded systems can produce effects on program behavior or state which, in
the context of particular test executions, do not propagate to output, but do
surface later in the field. Thus, oracles that are strictly “output-based”, may
fail to detect faults. So several “property-based” oracles are presented that use
instrumentation to record various aspects of execution behavior and compare
observed behavior to certain intended system properties that can be derived
through program analysis. These can be used during testing to help engineers

27

observe specific system behaviors that reveal the presence of faults.

input type program and test suit

output/result test results

programming language C, Java

implemented /tool support no

applied in real environment, yes

specific to embedded systems yes

use some coverage measure trace

computes some coverage measure | trace

instrumentation technique source code, OS, libraries, runtime sys-
tems

requires source code yes

BB testing method(s) none

Makes prioritization/selection no

A Model-Based Regression Test Selection Approach for Embedded
Applications [7]

A compound model-based regression test selection technique for embedded
programs is proposed in this paper. Also proposed a graph model of the program
under test (PUT). The authors mention to select a regression test suite based on
slicing this graph model. They also propose a genetic algorithm-based technique
to select an optimal subset of test cases from the set of regression test cases after
this selection.

The embedded systems’ advancement, entails the growing complexity of the
embedded programs. Object-oriented technologies are being increasingly adopted
for development because of the advantages they offer to handle complexity.

Every software product typically undergoes frequent changes in its lifetime
to fxing defects, enhancing or modifying existing functionalities, or adapting to
newer execution environments. But this means also that the satisfactory testing
of the embedded programs has turned out to be a challenging research problem.

For testing, we need a huge set, of test cases, which we need to execute for
regression testing. To save the resources during regression testing we can select
a subset from the regression test set and execute only this subset of test cases.
These are mostly the test cases that executes the modified parts of a program.
Test cases which tests a part of the program that has been deleted during a
modification can also be removed from the regression test set. Unfortunately,
many test cases that would detect regression errors are not selected so we need
to chose the test selection method wisely.

There are many test selection algorithms, but only few of them are suitable
for embedded systems. Moreover, if this system is large, complex and differ-
ent parts of it are written in different languages, than the traditional source-
analyzing methods are useless. The new approach proposed in this paper is
the model-based regression testing and test selection. The authors use a graph
model that is constructed with program analysis. This model can also be used
for prioritizing the regression test cases and selecting an optimal test suite.

Briefly the different steps involved in the approach presented in this article:

e The Intermediate Model Constructor constructs the intermediate model

28

for the original program.

e The Code Instrumenter instruments the original program, and the instru-
mented code is executed on the initial test suite by the Program Execution
module.

e The Model Differencer analyzes the modified source code and identifies the
model elements that are modified and tags those elements on the model.

e The Slicer performs a forward slice on the modified marked model to
identify the affected model elements that need to be retested.

e The Optimizer analyzes additional information about the program compo-
nents gathered from the operational profile, and prioritizes the test cases
based on the criteria used in the operational profile module.

e Subset of test cases than selected.

In the next section this paper shows the inadequacy of existing graphical
models to embedded systems and shows an extended one from them that is
suitable for embedded program’s regression test selection. The article shows
the additional features of the model in detailes. These features are the repre-
sentation of the control flow, exception handling and information representation
from design models.

The authors also shows a method briefly for test selection and for the test
suit, optimisation.

input type program and test suit
output/result test set
programming language C, Java
implemented /tool support no

applied in real environment, yes

specific to embedded systems yes

use some coverage measure no

computes some coverage measure | model
instrumentation technique source code, model
requires source code yes

BB testing method(s) model-based
Makes prioritization/selection yes

4.3 Grey-box

In this section white-box aided black-box testing methods (specially, coverage
aided random testing, test case prioritization and selection) are assessed.

Achieving both Model and Code Coverage with Automated Gray-box
Testing [38]

The Microsoft Research have developed a device for helping black-box testing.
It makes a tree from the specification by model checking and makes Model-Based
Tests by discovering the paths in this tree. This device is the Spec Explorer.

29

An other device developed by them, the Pex, is helping White-Box Testing
by making parametrized unit tests from program-trees and specifies the inputs
itself. Tt collects informations during the execution to make better random
inputs and to groups the paths that have the same outcome. The execution
stops when all inputs are tried or all groups are defined. In this way, Pex can
provide good path coverage.

Both device can be integrated into Visual Studio thus they are very effec-
tively usable. Combined usage computes the minimal number of parametrized
unit tests which provides high coverage.

The Spec Explorer is able to leave variables symbolic during the discover of
the specification. This process is building up a mathematical structure about the
interdependence of the variants. The result is a program-tree which discovered
by Pex, that provides not only inputs, but relevant values for the symbolic
variants. In this way we can provides better coverage and reduce the number of
necessary unit tests.

Pex is monitoring the data and control flow by instrumenting the source
code and gives reports about bugs and coverage.

We can build up the model (tree, data flow, control flow) manually with Spec
Explorer by the provided notation and style. Next, running the Spec Explorer
on this model is providing the parametrized unit tests in C# and also compile
these. Then Pex is using a symbolic execution on these tests to compute the
inputs and the values for the symbolic variables.

input type specification, implementation
output/result program-tree, test scenario, test inputs
programming language C, C++, C#, .NET

implemented /tool support SpecExplorer, Pex

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | model (path, branch, etc.)
instrumentation technique instruction level, code instrumentation
requires source code yes

BB testing method(s) model-based

Makes prioritization /selection yes

Prioritization/selection based on | paths in the program tree

Generating Test Cases from UML Activity Diagram based on Gray-
Box Method [41]

The authors proposed an approach to generate test sequences directly from
the UML activity diagram using a gray-box method, where the design is reused
to avoid the cost of test model creation. The paper shows that test scenarios can
directly derive from the activity diagram that modeling an operation. Therefore,
all the information, such as test sequences or test data, is extracted from each
test scenario. Gray-box testing method, in the designers’ viewpoint, generates
test sequences based on high level design models which represent the expected
structure and behavior of the software under test. Those specifications preserved
the essential information from the requirement, and are the basis of the code
implementation. The design specifications are the intermediate artifact between

30

requirement specification and final code. Gray-box method extends the logical
coverage criteria of white box method and finds all the possible paths from the
design model which describes the expected behavior of an operation. Then it
generates test sequences which can satisfy the path conditions by black box
method and provide high path, structure, method and model coverage.

input type UML Activity Diagram

output/result test scenario

programming language special UML

implemented /tool support implemented, but no tool

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | behavior, method, model, path, struc-
tural

instrumentation technique no

requires source code no

BB testing method(s) model-based

Makes prioritization /selection no

DART: directed automated random testing [27]

The authors of this paper want to eliminate the handwritten test drivers and
test harnesses and give an automatism to generate these thus make the test
environment. To reach this goal they developed an approach, DART, which
contains the three techniques below:

e retrieve the interface and the harness of the program automatically by
static code analysis,

e automatic test driver generation for this interface, which simulates the
most common harness of the program by random testing,

e dynamic behavior analysis during tests to generate the next inputs thus
we can systematically control the execution between the alternative paths.

In testing, DART can reveal the regular errors like program crush, assertion
violation, infinitive running. DART makes an instrumentation on the code in
the level of RAM machine, collects data during running and calculates values
in the executed branch. By these informations DART defines the inputs for
the next execution thus an other branch will be covered. The first inputs are
random values. Repeating the execution we can cover all the branches in the
program tree (branch/path coverage). DART can run symbolic and real execu-
tions parallel.

31

input type source code

output/result interface graph, test driver, test inputs
programming language C, C++, Java

implemented /tool support it is implemented, but not have a tool
applied in real environment, yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | path, branch

instrumentation technique in RAM-machine level

requires source code yes

BB testing method(s) model or graph based

Makes prioritization /selection no

Robust test generation and coverage for hybrid systems [35]

This paper presents how to develop a framework for generating tests from
hybrid systems’ models. The core idea of the framework is to develop a notion
of robust test, where one nominal test can be guaranteed to yield the same
qualitative behavior with any other test that is close to it.

Our approach offers three distinct advantages:

1. Tt allows for computing and formally quantifying the robustness of some
properties;

2. Tt establishes a method to quantify the test coverage for every test case;
3. The procedure is parallelizable and therefore, very scalable.

The ultimate goal of testing is to cover the entirety of the set of testing
parameters so in the end provide high path and model coverage.

When the set of testing parameters is an infinite set, it is obvious that we
cannot exhaustively test each of the testing parameters. However, it is possible
that one testing parameter is representative of many others. A testing parameter
is said to be robust if a slight (quantifiable) perturbation of the parameter is
guaranteed to result in a test with the same qualitative properties. Robustness
can lead to a significant reduction in the set of testing parameters.

They use a specific bi-simulation, where are no inputs, but properties. This
bi-simulation is symmetric and somehow same to pairwise testing.

32

input type model

output/result set of robust tests + inputs
programming language none

implemented /tool support implemented, but not have a tool
applied in real environment, yes

specific to embedded systems yes

use some coverage measure no

computes some coverage measure | model, path

instrumentation technique no

requires source code no

BB testing method(s) model-based, random seed for inputs
Makes prioritization /selection selection

Prioritization /selection based on | robustness

Specification Coverage Aided Test Selection [50]

This paper considers test selection strategies in formal conformance testing.
Toco [56] is used as the testing conformance relation, and extended to include
test selection heuristic based on a specification coverage metric. The proposed
method combines a greedy test selection with randomization to guarantee com-
pleteness. Bounded model checking is employed for lookahead in greedy test
selection.

It is particularly useful in testing implementations of communication proto-
cols like as tele- and data communication fields. Formal conformance testing
formalizes the concepts of conformance testing.

Essential notions, like ioco, include the implementation, the specification and
conformance relation between these two. Ioco is defied by restricting inclusion
of out-sets to suspension traces of the specification. It uses labeled transition
system to introduce conformance relation.

Using coverage that measures the execution of all the lines of a source code
at least once is a good choice to enhance test selection. Unfortunately, in black
box testing this is not possible, because we do not know the internals of the
actual implementation. From a pragmatic point of view, if the implementation
is made according to the specification (or vice versa) it is somewhat likely that
they resemble each other. Therefore this paper takes the assumption that in
many cases arising in practical test settings, specification based coverage can
"approximate" coverage used in white box testing.

This paper describes the used labeled transition system’s notation, the ioco
conformance relation, on-the-fly testing, petri nets, and in the end, it describes
the developed test selection methodology and algorithm.

They extended an on-the-fly algorithm from an other work [18].

The first extension is to keep track of the used coverage metric.

The second change is to use the HeuristicTestMove algorithm as the TestMove
subroutine. It will call a greedy coverage based test selection subroutine. If the
greedy test selection subroutine could not provide anything, it calls the already
presented random test selection subroutine.

33

input type test set,

output/result selected test’s set
programming language none

implemented /tool support implemented

applied in real environment, yes

specific to embedded systems no

use some coverage measure specification coverage
computes some coverage measure | no

instrumentation technique no

requires source code no

BB testing method(s) random with greedy selection
Makes prioritization /selection selection
Prioritization/selection based on | specification coverage

4.4 Tools

In this section, the overview of existing solutions in the field of automated
software and hardware testing is given. The most information and theoretical
knowledges are still offered by achievements in domain of academic research,
with huge number of published scientific papers and tools developed through
the realization of international projects. Beside, this section analyses industrial
solutions for automated testing that are more functional and less complicated
for both installation and usage unlike the academic solutions (this is justified
by the fact that their continuous development and improvement are provided
by the company). Finally, significant source of information is the database of
patents, due to the tendency of many companies to protect their intellectual
Property.

Majority of these tools are intended for testing both software and hardware.
When the hardware of embedded systems is tested, custom interfaces (in terms
of software) are used for that purpose. These interfaces interact with the system
by controlling and observing it through general interfaces (ports) that the system
already has (in the case of black-box), or by making special support for testing.
Support added for testing purposes can be consisted of both hardware (e.g.
adding debug interface) and software (adding support for communication with
testing interface through dedicated debug interface or through existing interface
like COM port, Ethernet, different serial interfaces, etc.).

Based on the relationship of the process of generating and executing tests,
the existing approaches in the field of automated testing can be divided into the
following groups of solutions:

e Automated test generation (for off-line execution),
e Automated test generation integrated with test execution (on-line testing),

e Automated test execution (off-line testing).

Some solutions additionally offers support for off-line test analysis.

The Overview of Existing Approaches and Tools for Automated
Model-Based Test Generation

34

MaTeLo Tool for making the model of system, model check, generation

of test scenarios based on the given model and the analysis of test execution
results [22].
The starting point of the modeling is the specification that describes the usage of
the system with certain level of abstraction. The model of the system is consisted
of the states and transitions among them with assigned probabilities (the model
describes expected usage of the system and is based on Markov chains). One of
the biggest challenge during the modeling is giving precise probability distribu-
tions. Tests are generated by making patch through the model according to one
of following criteria for test steps selection: Chinese postman algorithm (tests
are generated to cover all transitions, disregarding the probability distribution)
and selection on the principle of probability (leaving a state, the transition with
the highest probability is elected). Though supported test formats are TTCN-3
and XML, the tool generates tests in several special-purpose formats adapted
to customers (National Instruments TestStand, MBtech PROVEtech, IBM Ra-
tional Functional Tester, HP QuickTest Professional, SeleniumHQ). Test results
analysis gives information like model coverage, reliability of software/hardware,
mean time to failure, and failure probability. The tool is intended for functional
testing, testing of integration and acceptance in the field of embedded systems.
During the usage of the tool, following deficiencies are observed:

e The size of the test set that can be generated in one pass is limited to 400,

e There is no support for the calculation of the number of the tests required
to achieve desired reliability of the system.

The tool is developed through the international project of the Fifth Frame-
work Programme (FP5). Nowadays, it is own by the Alldtec company and is
available on the market as a commercial solution requiring an appropriate li-
cense.

input type some kind of model
output/result test cases, scenarios
programming language TTCN-3, XML, user defined
implemented /tool support tool

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | specification, arc and state
instrumentation technique no

requires source code no

BB testing method(s) Markov-model-based
Makes prioritization /selection can make selection

mbt Open source tool for automated generation of test scenarios according
to the model [37]. It doesn’t support graphical presentation of the model, thus
the model given in .graphml format is required to be passed as input parameter
(it doesn’t use UML format, avoiding unnecessary complexity). For making the
model, yEd tool could be used. The model is consisted of the states and tran-
sitions among them with assigned probabilities. As the criteria of test selection

35

A* algorithm and random selection, coverage of states and transitions and oth-
ers are used. Beside generating tests for later (indirect) execution, generating
integrated with execution (on-line testing) is also supported.

input type model in GraphML
output/result test cases, scenarios
programming language Java

implemented /tool support tool

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | yes
instrumentation technique no

requires source code no

BB testing method(s) model-based
Makes prioritization /selection selection

TorX The tool for automated generation of test scenarios for testing the
compliance of the system with a certain standard, intended for the class sys-
tems whose operating mode involves interaction with the environment (reactive
systems), e.g. embedded systems, communication protocols, etc. [55]. Tests are
derived from system behavioral model and some environmental aspects could be
partially described also (system’s environment model). For generation of tests
scenarios the ioco algorithm is used, which aims the definition of finite test set
which will discover as much errors as possible during testing with limited dura-
tion. Test scenarios are selected on several ways: randomly, by usage of ad hoc
test specification, based on some heuristics, or by the criteria of model coverage.
In earlier versions, the tool supported integrated test generation and execution
only (on-line testing), i.e. test scenarios were generated as needed during the
execution. The regime where previously prepared test set is used in execution
(off-line testing) is enabled later. Basic characteristics of the tool are flexibility
and openness. The flexibility provides simple substitution of any component of
the tool with the improved one, while the openness relates to the possibility of
adding new independent (third-party) components. The tool supports repeated
execution of test sets derived from different specifications, with different con-
figurations, and the like (test campaign). Additionally, archiving results on a
systematic way is supported. The tool is used in several studies. Lucent R&D
Center Twente is successfully used by TorX for testing of network protocols [55].
The tool is also used for testing the system for conference protocol [19] and for
testing the highway tolling system [17]. However, some deficiencies of the tool
are observed during the usage [55]:

e Insufficient support for testing the real-time applications, and
e Bad performance of generating test scenarios.

Other deficiencies of the tool that are observed:

e No possibility for model analysis (e.g. model coverage) and the analysis
of test results,

36

e No possibility for assigning the probability of transitions between states,
e Big complexity of installation and configuration of the tool, and

e Though the tool supports separated generation and execution of tests (off-
line testing), the documentation about that is not available.

Though the tool is available for academic researches [26], the complexity of
the process of installation and configuration limits its practical application to a
large extent. Moreover, studies in which the tool was used were performed or
assisted by the author of the tool. The aforementioned reasons have contributed
to the development JTorX tools.

input type behavioral and environment model

output/result test cases, scenarios

programming language any

implemented /tool support tool

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | yes

instrumentation technique no

requires source code no

BB testing method(s) ioco algorithm

Makes prioritization /selection selection

Prioritization/selection based on | randomly, ad hoc test specification,
heuristics, criteria of model coverage

JUMBL The tool for statistical model-based testing [49]. It is developed
in Java programming language, in order to be platform independent. TML
language (notation for description of Markov chains) is used for the model de-
scription. The model is consisted of the states and the transitions among states
related to pairs of input events and corresponding probabilities. The tool doesn’t
support graphical model description, but the model parameters are given in text
format, through the command line. The tool supports model analysis in terms of
model size, expected length of the test scenario, expected duration of retention
in the each state of the model during testing, expected number of occurrences
for each state and transition in the test scenario, etc. JUMBL enables the anal-
ysis of test results and the measure of tested system reliability. Calculation of
system reliability is based on the previously proposed model [44]. In first step,
the best reliability is calculated, i.e. the reliability that will be achieved if all
tests pass once they are executed. This step doesn’t require execution of tests
and serves to calculate the size of test set needed for achieving desired reliability
level. In the next step, real reliability is calculated as the ratio of successfully
and unsuccessfully executed tests. The deficiency of the tool is lack of support
for graphical notation of the model and, more important, though the tool was
originally available for academic usage, currently it is not.

37

input type model in TML language
output / result test cases, scenarios
programming language Java

implemented /tool support tool

applied in real environment, yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | yes

instrumentation technique no

requires source code no
BB testing method(s) Markov-model-based
Makes prioritization/selection selection

TGV The tool for generation of the tests intended for verification of com-
pliance of the system with the standard in the area of the protocol [57]. The
model of the system under test is based on the principal of labeled transitions
(labeled transition systems). Toco algorithm is used for the generation of test
scenarios, with the criteria for test selection defined by test specification. The
tool supports the assignment of time controls at the time of test execution [23].
E.g. time control is started in the moment then input event is expected. If
the input event happens, time control is stopped. Otherwise, the test execution
is considered as unsuccessful. The tool is used in the studies of protocol test-
ing [34].

input type

labeled transitions model

output/result

test cases, scenarios

programming language

TTCN

implemented /tool support

tool for protocol testing

applied in real environment

no

specific to embedded systems no

use some coverage measure branch
computes some coverage measure | yes
instrumentation technique no

requires source code no

BB testing method(s) ioco algorithm
Makes prioritization /selection selection
Prioritization/selection based on | specification

AETG The generator of inputs for combined model-based testing [11].
In combined testing approach, test scenarios are defined so that all the com-
binations of test parameters are covered (user inputs, internal and external
parameters, etc.). Number of these test scenarios could be huge in practice.
The tool provides optimal selection of double, triple and quadruple inputs, i.e.
it defines inputs, but it doesn’t support providing of expected outputs which
are necessary in the case of automated testing. Though the tool models system
environment, there is no support for describing the behavior of system under
test. AETG is commercial tool intended for testing different configurations of
device or any other product where parameters selection is important. It is used
in several studies for testing compliance with the protocol specification.

38

input type some model

output / result test cases, scenarios
implemented /tool support tool

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | n-*way coverage
instrumentation technique no

requires source code (yes/no) no

Makes prioritization /selection selection
Prioritization /selection based on | all parameters covered

LTG Commercially available tool for the generation of tests intended for
the testing of the systems that reacts to the stimuli from the environment, em-
bedded systems and applications for electronic transactions [6]. The generation
of tests is based on the system usage model, where the coverage of the model is
used as the criteria for test selection. The tool is used for testing of the smart
card applications [8].

input type system usage model
output/result

implemented /tool support tool
applied in real environment yes
specific to embedded systems yes

use some coverage measure yes
computes some coverage measure | yes
instrumentation technique no
requires source code no
Makes prioritization /selection selection
Prioritization/selection based on | coverage

Conformiq Tool Suite The Conformiq company provides the Conformiq
Tool Suite for modeling the system and for automated generation of model-
based test scenarios [12]. It is possible to describe the model graphically (UML
notation) or textually (QML - Qtronic Modelling Language, based on Java and
C# languages) [32]. Beside the generation of test set for later execution (off-
line testing), the test generation integrated with test execution is also supported
(on-line testing). It is possible to use the tool from Eclipse environment or as the
standalone tool. Tt is available for both Windows and Linux operating systems.
It supports several test file formats: TCL, TTCN-3 Visual Basic, HTML, and
XML. The tool is available with commercial license.

39

input type

UML or QML model

output/result

test cases, scenarios

programming language

Python, TCL, TTCN-3, C, C++, Vi-
sual Basic, Java, Junit, Perl, Excel,
HTML, Word, Shell Scripts

implemented /tool support tool
applied in real environment yes
specific to embedded systems no

use some coverage measure no
computes some coverage measure | yes
instrumentation technique no
requires source code no
Makes prioritization /selection selection

Prioritization /selection based on

state coverage, transition coverage, 2-
transition coverage, Boundary Value
Analysis, Branch Coverage, Atomic
Condition Coverage, Method Coverage,
Statement Coverage, Parallel Transi-
tion Coverage

Spec Explorer

Microsoft introduced the Spec Explorer tool designed to

test the software on the principle of modeling [43]. Behavioral model is generated
by the software based on the source code and defined by C# programming
language. The model is also represented as the graph for easier readability
for the user. After verifying the correctness of the model, test scenarios are
generated. Spec Explorer is an extension of Microsoft Visual Studio tool set,
and is supplied as an integral part since the version 2010 of Visual Studio.

Microsoft has patented a method and system for software testing and mod-
eling of user behavior [2]. Aspects of using the software under test are described
by the model, which is then used to generate tests. The method uses several
algorithms for test execution, depending on the goal of testing: Chinese post-
man algorithm, the selection of test steps in a random manner or contrary to
the principle of random selection, i.e. the next test step is one that has not
previously been selected.

input type specification or model

output/result test scenarios or a graph

programming language C#, .NET

implemented /tool support Visual Studio 2010 Ultimate and above,
SpecExplorer

applied in real environment, yes

specific to embedded systems no
use some coverage measure behavioral, branch

computes some coverage measure | code
instrumentation technique .NET assembly level, binary inst.
requires source code yes

BB testing method(s)
Makes prioritization /selection
Prioritization /selection based on

Markov-model-based
can make both
some user-defined aspect

40

The Overview of Existing Approaches and Tools for Automated
Model-Based Test Generation Integrated with Test Execution

JTorX The successor of TorX tool, developed to remove some of the draw-
backs of the previous version [5]. TorX is developed to support the flexibility
and openness, while some important features such as ease of installation, multi
platform support, ease of use, and others are ignored. JTorX is developed using
Java programming language, thus facilitating the installation. Also, added a
graphical user interface, which enables easy configuration of the tool. Besides
improved ioco algorithm for test generation [54], JtorX supports uioco algo-
rithm. One feature that characterizes this particular tool and distinguishes it
from similar tools is the advantage for use in teaching. JTorX is available for
academic purposes [25].

input type behavioral and environment model

output/result test cases, scenarios

programming language Java

implemented /tool support tool

applied in real environment yes

specific to embedded systems no

use some coverage measure no

computes some coverage measure | yes

instrumentation technique no

requires source code no

BB testing method(s) improved ioco algorithm, uioco algo-
rithm

Makes prioritization /selection selection

Prioritization/selection based on | randomly, ad hoc test specification,
heuristics, criteria of model coverage

AGEDIS The tool for automated model-based testing of distributed sys-
tems. It consolidates the environment for model description (UML model de-
scription), the model-check, test generation, model coverage analysis, test exe-
cution, the analysis of detected failures, and the generation of testing reports,
[33, 30]. The tests are generated by the kernel of TGV tool, while the analysis
of model coverage is realized with FoCuS tool [4]. Test execution is supported in
distributed work regime. The tool was at first available for academic purposes,
however, it is not maintained and currently not available.

41

input type UML model

output / result test cases, scenarios, reports

programming language Abstract Test Suite (ATS)

implemented /tool support tool

applied in real environment, no

specific to embedded systems no

use some coverage measure no

computes some coverage measure | yes

instrumentation technique no

requires source code no

BB testing method(s) based on coverage of inputs to the
model

Makes prioritization /selection no

The Overview of Existing Approaches and Tools for Automated Test
Execution Sony has patented a system for automatic testing of TV sets,
which is a unit testing approach using a black box [59]. The tests consist of a
series of sequences that are sent in the first step to the TV. After processing,
output signals from the TV are recorded and compared with expected according
to the relevant principles. The system consists of: (i) the unit to record the TV
output, (ii) devices for the TV remote control, (iii) a PC that performs the
appropriate application for testing and is associated with a database to store
the tests, and (iv) test results. Another solution patented by Sony in the field
of system testing is the system for automated testing of consumer electronics
devices (audio / video devices, TV sets), with a focus on device performance
testing [24]. Unlike previous solutions, communication with the tested appliance
is accomplished via the command codes that are transmitted wireless. Similar
to the previous design, the system is designed to test the video quality on the
TV. Unlike the previous one, this solution verifies the memory consumption of
the test device.

Philips has patented a system and method for automated testing of the TV
sets [51]. The system consists of a unit that sends digital video signals to the
TV as inputs and, after processing the test signal, receives output video signals
from the TV. Processing unit performs comparison of the reference and the
output (test) signal and, based on appropriate algorithms, evaluates the quality
of video signal from the TV. Jitter, SNR (signal-to-noise ratio) measure, and
blocks’ similarity percentage are used as the criteria for comparison of test and
reference signals.

The company Hon Hai Precision Industry has patented a system for au-
tomated performance measurement for set-top box devices [42]. The system
consists of the audio and video test signals source, the testing process controller
(PC), and the encoder and analyzer of audio and video signals. Based on the
content of the test scenario, the controller of the testing process triggers sources
of audio and video signals, to generate test signals for the system under test.
The signal is then converted to the corresponding data stream format and trans-
ferred to the system under test. By passing of a given data stream through the
system, output test signal is received. Based on the test scenario, the controller
of the testing process sets the parameters of audio and video signals’ analyzer.
Test signal is analyzed according to these parameters. The system is applicable

42

for audio and video signal analysis and performance measurement for set-top-
box devices.

5 Evaluation and comparison

In this section, a detailed assessment of relevant tools is shown. We separately
evaluate black-box, white-box, and gray-box techniques and tools.

5.1 Black Box Testing

Selection @/ Prioritization O
Requires Source Code
Instrumentation: source ©/ binary @
Specific to Embedded Systems
Applied in Real Environment
Implemented Tool Support
Programming Language
Output / Result
Input
P.
[13] Matlab, Classification PROGRES |@ | ®@ | ®@ | O | O | O
Simulink, tree
Stateflow model
[20] Some kind of Test cases, - ® @ O|O|O]|O
model scenarios
[29] Some kind of Test cases, TTCN-3 e ® O|OC|@]| O
model scenarios
[15] Requirements Test suite C e O/ | O | @ |0
specification
45 UML use cases Test suite C++ Ol e|e@|O| O] O
39 State diagram Test cases - ® OO0 |00 0
52 State chart Test cases C++ O|le@| OO | O] O
19] Specification or Test scenarios C#, .NET ® e O|0|e | @
model or a graph
[53] Any kind of Parameterized Java, NET | @ | @ | O | O | O]| O
unit tests or unit tests
implementation
[47] | Model or source | Test suite and Java, NET | @ | @ | O | O | ®| O
code inputs
28 Control flow Test suite C, Prolog O|le|O|O|O]| O
10 Input domain Test inputs C++ O|lO|O|O]0O]|O

Table 1: Assessment of black-box testing methods.

In Table 1 we present an overview of the overall classification and evaluation
criteria. The first column presents the citation index of the method, and the
next columns are as follows:

Input Input type, which is usually some kind of model, source code or specifi-
cation given in a suitable form (chart or diagram).

Output / Result A brief output/result description.
Programming Language The used programming language for each method.

Implemented Tool Support Whether the supporting tool is implemented.

43

Applied in Real Environment Whether the method is applied in real envi-
ronment.

Specific to Embedded Systems Is the method used for embedded systems
testing.

Instrumentation The used instrumentation technique, source code or binary
instrumentation.

Requires Source Code Is the source code required?
Selection / Prioritization Is test case selection or prioritization possible?

The most promising method in BBT is the MaTeLo testing suite for au-
tomatic software validation, although it is not common in embedded system
usage.

5.2 White Box Testing

The evaluation criteria for white box methods are the following;:

Input type Gives the input of the evaluated method.
Output / result Gives output and / or result of the evaluated method.

Programming language Denotes whether the evaluated method is specific
for some programming languages, or it can be applied to any programming
language.

Implemented / tool support Indicates whether the method is implemented
fully or partially, or there are tools that support this method.

Applied in real environment Indicates whether the method is purely theo-
retical, or it has been applied and its applicability has been proven in real
scenarios.

Specific to embedded systems Indicates whether the evaluated method is
specific to embedded systems environment, or it is general and can be
effectively used not only in embedded systems.

Use some coverage measure Indicates whether the method uses some kind
of coverage values (e.g. code or functional coverage) as input.

Computes some coverage measure Indicates whether the method computes
some kind of coverage values (e.g. code or functional coverage) as output.

Instrumentation technique If instrumentation is used in the method, this
point gives the instrumentation technique (e.g. source code, binary, etc.)

Requires source code Indicates if the method requires the source code of the
system under test, or works from some other test basis.

BB testing method(s) This point indicates the general black-box testing meth-
ods that are specialized in the evaluated solution.

44

Makes selection / prioritization Indicates usage of test case selection/ pri-
oritization techniques and shows exactly what kind of technique is used.

Prioritization / selection based on Shows the base measure or data of the
used test case prioritization/selection techniques (e.g. extent of code cov-
ered, time required for execution, etc.).

Selection @/ Prioritization @
BB testing method
Requires Source Code
Instrumentation: source ©/ binary @
Specific to Embedded Systems
Applied in Real Environment
Implemented Tool Support
Programming Language
Output / Result
Input
P.
[14] | source code | percentage C, O|le| 0|0 | @ - O
of observed CH++
statements
[46] source sets of - O|@®@| O| O | @ | usecases, O
code, closes boundary
implemen- values,
tation, abstract
interface implemen-
tation
[40] formal boundary B, Z, ® | ® | OO | O - O
model coverage VDM,
UML/
OCL
[31] | Embedded instru- [¢] e ® | ®@| 0| O - @)
System mented
system

Table 2: Assessment of white-box testing methods.

Also, in Table 2 concerning WBT techniques, for each one, the input type,
outputs/results, programming language, implemented tool support, is the method
supplied in real environment, or specific to embedded systems, can it implement
the instrumentation technique, does it require the source code, is it possible to
combine with the BBT testing technique, or can the selection /prioritization be
implemented during testing.

We can conclude that the “Boundary coverage criteria for test generation
from formal models” is the most promising method, but it does not perform
instrumentation, nor does it require source code. It also can perform selection
and prioritization, but is not used in BBT.

5.3 Gray Box Testing

In this section white-box aided black-box testing methods (specially, coverage
aided random testing, test case prioritization and selection) are assessed.

In Table 3, we give a briefing of the methods for gray-box testing. For each
method, a brief evaluation concerning main specifications is presented. It seems
that the first method which achieves both model and code coverage has the best
options.

45

Selection @/ Prioritization @
BB testing method
Requires Source Code
Instrumentation: source ©/ binary @
Specific to Embedded Systems
Applied in Real Environment
Implemented Tool Support
Programming Language
Output / Result
Input
P.
[38] Specific- Program C, e ® | O | 0| @ Model- [
ation, tree, test C++, based
implemen- scenarios, CH#,
tation test inputs NET
[41] UML Test UML O| @] O | O] O Model- @)
activity scenarios based
diagram
[27] Source Interface C, O|le|O0O |0]| @ Model or O
code graph, test C++, graph-
drivers, Java based
test inputs
[35] Model Test cases, - O|le|e@|O|O Model-)
test inputs based,
random
[50] Test set Selected - ®e | ®@ | O|O|O Random)
test set
Table 3: Assessment of gray-box testing methods.
5.4 Tools

Table 4 gives a briefing of approaches and tools for automated model-based
test generation with similar properties overview like in previous tables, but also
with information of coverage usage and its computation, selection /prioritization
possibilities and the methods they are based on. Which one of these tools are
mostly efficient, of course depends on the needs of the user. For example, LTG is
both used in embedded systems and has many other advantages. Another good
example is the Spec-explorer tool, but it is not for embedded systems usage.

Table 5 shows only two existing tools for automated model-based test gen-
eration integrated with test execution. The same properties are presented for
each one.

6 Conclusions

During the assembly of this survey, we made the following observations.

There are many black-box and white-box testing techniques exist that are
not specific to but can potentially be used in embedded systems enviromnents.
Although the combination of black-box and white-box testing methods is men-
tioned many times as a method that can result in better testing, in these papers
different, techniques are rarely combined. Mostly fragments and partial solu-
tions, but not complex processes are presented. For example, even if test exe-
cution produces some additional data, there is no feedback into some previous
step of the process. Overall, although there are many possibilities to be used in
embedded systems testing, these are not utilized (or at least not reported).

46

Selection (@) / prioritization (@)
BB testing method
Requires source code
Instrumentation: source (©) / binary (@)
Uses (©) / computes (@) coverage
Specific to Embedded Systems
Applied in Real Environment
Programming Language
Output / Result
Input
Tool
MaTeLo Model Test TTCN-3, Markov
cases, XML, model
scenarios custom
mbt GraphML Test Java Model-
cases, based
scenarios
TorX Behav- Test Any Toco
ioural cases, alg.
and scenarios
environ-
mental
model
JUMBL TML Test Java Markov
Model cases, model
scenarios
TGV Labelled Test TTCN Toco
Transi- cases, alg.
tion scenarios
Model
AETG Model Test - -
cases,
scenarios
LTG System - - -
usage
model
Conformiq UML or Test Python, -
QML cases, TCL,
model scenarios | TTCN-3,
C, C++,
Visual
Basic,
Java,
Junit,
Perl,
Shell
Scripts
Spec Specific- Test CH#, Markov
Explorer ation or scenarios NET model
model

Table 4: Overview of Existing Approaches and Tools for Automated Model-
Based Test Generation.

In addition, despite of there are some promising tools, which could be ef-
fectively used to ease testing and/or improve its quality, neither of them are
specialized for embedded systems. And there are only a very few papers report
on the application of these testing techniques in embedded systems, and most
of these papers report on results, and not on technical details.

47

Selection (@) / prioritization (@)

BB testing method
Requires source code
Instrumentation: source (@) / binary (@)
Uses (©) / computes () coverage
Specific to Embedded Systems
Applied in Real Environment
Programming Language
Output / Result
Input
Tool
JTorX Behav- Test Java | O|d|O|O Improved ©
ioural cases, ioco alg.,
and scenarios uioco alg.
environ-
mental
model
AGEDIS UML Test ATS O|lO0|]d|O]|O Based on O
Model cases, coverage
scenarios of inputs
to the
model

Table 5: Overview of Existing Approaches and Tools for Automated Model-
Based Test Generation.

Thus, it seems to be that a good general framework for embedded systems

testing is still missing from the market.

Acknowledgement

This work were done in the Cross-border ICT Research Network (CIRENE)
project (project number is HUSRB1002/214/044) supported by the Hungary-
Serbia IPA Cross-border Co-operation Programme, co-financed by the
European Union.

References

1]
2]

3]

[4]
[5]

Debugging, August 2012.

D. Achlioptas, C. Borgs, J. Chayes, Robinson H., J. Tierney, and Microsoft
Corporation. Methods and systems of testing software, and methods and
systems of modeling user behavior, 2009.

Luca De Alfaro and Thomas A. Henzinger. Interface automata. In Pro-
ceedings of the Ninth Annual Symposium on Foundations of Software En-
gineering, pages 109-120. ACM Press, 2001.

alphaWorks. Focus homepage, http://www.alphaworks.ibm.com/tech/focus.

A. Belihfante. Jtorx: A tool for on-line model-driven test derivation and
execution. Tools and Algorithms for the Construction and Analysis of Sys-
tems, Lecture Notes in Computer Science, 6015:266-270, 2010.

48

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F. Peureux, M. Ut-
ting, and E. Torreborre. Model-based testing from uml models. Lecture
Notes in Informatics, pages 223-230, 2006.

Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Suku-
maran. A model-based regression test selection approach for embedded
applications. SIGSOFT Softw. Eng. Notes, 34(4):1-9, July 2009.

F. Bouquet, B. Legeard, F. Peureux, and E. Torreborre. Mastering test
generation from smart card software formal models. In Proceedings of the
International Workshop on Construction and Analysis of Safe Secure and
Interoperable Smart devices, pages 70-85. Springer-LNCS, 2004.

Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte,
Nikolai Tillmann, and Margus Veanes. Testing concurrent object-oriented
systems with spec explorer. In Formal Methods, volume 3582 of Lecture
Notes in Computer Science, pages 542-547. Springer, 2005.

T.Y. Chen. Adaptive random testing. In Quality Software, 2008. QSIC
'08. The Eighth International Conference on, page 443, August 2008.

D.M. Cohen, S.R. Dalal, A. Kajla, and G.C. Patton. The automatic effi-
cient test generator (aetg) system. In Proceedings of the 5th International
Symposium on Software Reliability Engineering, pages 303-309, November
1994.

Conformiq Inc. Homepage, http://www.conformiq.com/products/, Au-
gust 2012.

Mirko Conrad, Heiko Dorr, Ingo Stiirmer, and Andy Schiirr. Graph trans-
formations for model-based testing. In Modellierung in der Praxis - Mod-
ellierung fiir die Praxis, Modellierung 2002, pages 39-50. GI, 2002.

José C. Costa, Srinivas Devadas, and José C. Monteiro. Observability
analysis of embedded software for coverage-directed validation. In In Pro-
ceedings of the International Conference on Computer Aided Design, pages
27-32, 2000.

S.J. Cunning and J.W. Rozenblit. Automatic test case generation from
requirements specifications for real-time embedded systems. In Systems,
Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings. 1999
IEEFE International Conference on, volume 5, pages 784789, 1999.

Alan M. Davis. A comparison of techniques for the specification of external
system behavior. Commun. ACM, 31(9):1098-1115, September 1988.

R. G. de Vries, A. Belinfante, and J. Feenstra. Automated testing in prac-
tice: The highway tolling system. In Proceedings of the IFIP 1/th Interna-
tional Conference on Testing Communicating Systems XIV, pages 219-234.
Kluwer Academic Publishers, 2002.

René G. de Vries and Jan Tretmans. On-the-fly conformance testing us-
ing spin. International Journal on Software Tools for Technology Transfer
(STTT), 2:382-393, 2000. 10.1007/s100090050044.

49

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

L. Du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. Belinfante,
and R. de Vries. Formal test automation: The conference protocol with
tgv/torx. In Proceedings of the 13th International Conference on Test-
ing Communicating Systems (TestCom 2000), page 221-228, August 29 -
September 1 2000.

I. K. El-Far and J. A. Whittaker. Model-based software testing. In Ency-
clopedia of Software Engineering, pages 1-22. John Wiley & Sons, 2001.

V. Encontre. Testing embedded system: Do you have the guts for it?, 2004.

A. Feliachi and H. Le Guen. Generating transition probabilities for auto-
matic model-based test generation. In Proceedings of the Third Interna-
tional Conference on Software Testing, Verification and Validation, pages
99-102, April 2010.

J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. An experiment in auto-
matic generation of conformance test suites for protocols with verification
technology. Science of Computer Programming, 29:123-146, 1997.

P. Flores, V. Mehta, H. Nguyen, M. Sharma, C. Walsh, T. Xiong, and Sony
Electronics. Automated test for consumer electronics, 2010.

Formal Methods and Tools research group, University of
Twente. JTorX - a tool for model-based testing, homepage,
http://fmt.cs.utwente.nl/tools/jtorx/, August 2012.

Formal Methods and Tools research group, University of Twente,
Eindhoven Technical University, Philips Research Laborato-
ries, and Lucent Technologies. TorX test tool homepage,
http://fmt.cs.utwente.nl/tools/torx, August 2012.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and implementation, PLDI 05,
pages 213—-223, New York, NY, USA, 2005. ACM.

Arnaud Gotlieb and Matthieu Petit. Path-oriented random testing. In
Proceedings of the 1st international workshop on Random testing, RT ’06,
pages 28-35, New York, NY, USA, 2006. ACM.

A Guiotto, B Acquaroli, and A Martelli. MaTeLo: Automated Testing Suite
for Software Validation, pages 253-261. ESA, 2003.

A. Hartman and K. Nagin. The agedis tools for model based testing.
Test generation - ACM SIGSOFT Software Engineering Notes archive,
29(4):129-132, July 2004.

Kim Hazelwood and Artur Klauser. A dynamic binary instrumentation
engine for the arm architecture. In Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded systems,
CASES 06, pages 261-270, New York, NY, USA, 2006. ACM.

50

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Huima. Implementing conformiq qtronic. In Testing of Software and
Communicating Systems (TestCom/FATES’07), volume 4581/2007, pages
1-12. Springer-LNCS, 2007.

IBM Research Laboratory in Haifa, Oxford University Computing Labora-
tory, Verimag laboratory at Universite Joseph Fourier in Grenoble, France
Telecom R&D, IBM development Laboratory in Hursley Park (UK), In-
trasoft International, and imbus AG, Moehrendorf, Germany. Automated
generation and execution of test suites for distributed component-based
software, agedis homepage, http://www.agedis.de/index.shtml, August
2012.

C. Jard and T. Je’ron. Tgv: Theory, principles and algorithms. In Pro-
ceedings of the Sixth World Conference on Integrated Design and Process
Technology, IDPT-2002, June 2002.

A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and
George J. Pappas. Robust test generation and coverage for hybrid systems.
In Proceedings of the 10th international conference on Hybrid systems: com-
putation and control, HSCC’07, pages 329-342, Berlin, Heidelberg, 2007.
Springer-Verlag.

S. Kandl, R. Kirner, and P. Puschner. Automated formal verification and
testing of ¢ programs for embedded systems. In Object and Component-
Oriented Real-Time Distributed Computing, 2007. ISORC ’07. 10th IEEE
International Symposium on, pages 373 =381, may 2007.

Kristian Karl and Johan Tejle. mbt homepage, http://mbt.tigris.org/,
August 2012.

Nicolas Kicillof, Wolfgang Grieskamp, Nikolai Tillmann, and Victor
Braberman. Achieving both model and code coverage with automated
gray-box testing. In Proceedings of the 3rd international workshop on Ad-
vances in model-based testing, A-MOST ’07, pages 1-11, New York, NY,
USA, 2007. ACM.

Nicha Kosindrdecha and Jirapun Daengdej. A test generation method based
on state diagram. Journal of Theoretical and Applied Information Tech-
nology, 18(2):28-44, August 2010.

N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary coverage
criteria for test generation from formal models. In Software Reliability
Engineering, 2004. ISSRE 2004. 15th International Symposium on, pages
139-150, November 2004.

Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuandong, and
Zheng Guoliang. Generating test cases from uml activity diagram based
on gray-box method. In Proceedings of the 11th Asia-Pacific Software En-
gineering Conference, APSEC ’04, pages 284-291, Washington, DC, USA,
2004. IEEE Computer Society.

P. Liu and Hon Hai Precision Industry. Automated test measurement sys-
tem and method therefor, 2008.

o1

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Microsoft. Spec Explorer homepage,
http://visualstudiogallery.msdn.microsoft.com/
271d0904-£178-4ce9-956b-d9bfad902745/, August 2012.

K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Nicol, B.W. Mur-
rill, and M. Voas. Estimating the probability of failure when testing reveals
no failures. IEEFE Transactions on Software Engineering, 18(1):33-43, 1992.

C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel. Automatic test gen-
eration: a use case driven approach. Software Engineering, IEEE Transac-
tions on, 32(3):140-155, March 2006.

Hanne Riis Nielson and Flemming Nielson. Flow logic: a multi-
paradigmatic approach to static analysis. In Torben AMogensen, David A.
Schmidt, and I. Hal Sudborough, editors, The essence of computation,
pages 223-244. Springer-Verlag New York, Inc., New York, NY, USA, 2002.

C. Pacheco, S.K. Lahiri, M.D. Ernst, and T. Ball. Feedback-directed ran-
dom test generation. In Software Engineering, 2007. ICSE 2007. 29th In-
ternational Conference on, pages 7584, May 2007.

A. Penttinen, R. Jastrzebski, R. Pollanen, and O. Pyrhonen. Run-time
debugging and monitoring of fpga circuits using embedded microprocessor.
In Design and Diagnostics of Electronic Circuits and systems, IEEFE, pages
147-148, 2006.

S. Prowell. Jumbl: A tool for model-based statistical testing. In Proceedings
of the 36th Annual Hawaii International Conference on System Sciences,
page 337.3, 2003.

T. Pyhala and K. Heljanko. Specification coverage aided test selection.
In Application of Concurrency to System Design, 2003. Proceedings. Third
International Conference on, pages 187-195, June 2003.

A. Rau and Philips Electronics. System and method for automated testing
of digital television receivers, 2004.

Valdivino Santiago, Ana Silvia Martins do Amaral, N. L. Vijaykumar,
Maria de Fatima Mattiello-Francisco, Eliane Martins, and Odnei Cuesta
Lopes. A practical approach for automated test case generation using stat-
echarts. In Proceedings of the 30th Annual International Computer Software
and Applications Conference, volume 02 of COMPSAC 06, pages 183-188,
Washington, DC, USA, 2006. IEEE Computer Society.

N. Tillmann and W. Schulte. Unit tests reloaded: parameterized unit
testing with symbolic execution. Software, IEEE, 23(4):38-47, July-August
2006.

J. Tretmans. Model based testing with labelled transition systems. In
Formal Methods and Testing, volume 4949, pages 1-38. Springer-LNCS,
2008.

J. Tretmans and H. Brinksma. Torx: Automated model-based testing. In
Proceedings of the First European Conference on Model-Driven Software
Engineering, pages 31-43, 2003.

52

[56]

[57]

[58]

[59]

[60]
[61]

Jan Tretmans. Test generation with inputs, outputs and repetitive quies-
cence, 1996.

Verimag. TGV, test generation with verification technology, homepage,
http://www-verimag.imag.fr/tgv.html, August 2012.

T. Wei-Tek, Y. Lian, Z. Feng, and R. Paul. Rapid embedded system testing
using verification patterns. Software, IEEE, 22(4):68-75, July-Aug 2005.

M. Wu and Sony Electronics. Automated software testing environment,
2010.

T. Yu. Testing embedded system applications, 2010.

Tingting Yu, Ahyoung Sung, W. Srisa-an, and G. Rothermel. Using
property-based oracles when testing embedded system applications. In
Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth
International Conference on, pages 100 =109, march 2011.

53

