
Survey on Testing Embedded Systems

Árpád Beszédes

†
Tamás Gergely

†
István Papp

‡

Vladimir Marinkovi

‡
Vladimir Zlokoli
a

‡ ∗

†
Department of Software Engineering, University of Szeged

‡
Fa
ulty of Te
hni
al S
ien
es, University of Novi Sad

Abstra
t

Embedded systems are widely used in everyday life, thus the qual-

ity assuran
e of su
h systems are important. One of the quality assur-

an
e methods is software testing. Di�erent software testing methods have

di�erent appli
ability in this spe
ial environment of embedded systems,

whi
h sometimes require spe
i�
 solutions for testing. The Department

of Software Engineering, University of Szeged and Fa
ulty of Te
hni
al

S
ien
es, University of Novi Sad have started a joint proje
t whose main

topi
 is embedded systems software testing. The goal of the proje
t is the

ombination of white-box and bla
k-box testing methods to improve the

quality of the tests (and, transitively, the quality of the software) in digital

multimedia environment. The goal of this survey is to overview existing,

do
umented solutions for embedded system testing,
on
entrating on (but

not limited to) the
ombination of stru
tural and fun
tional tests.

Prefa
e

The University of Szeged (USZ), University of Novi Sad (UNS) and Vojvodina

ICT Cluster (VOICT) have started a joint proje
t
alled CIRENE. The proje
t

is �nan
ed by the European Union, and its main goal is to establish a work-

ing
ross-border
ooperation between the parties. As a proof of
on
ept, the

proje
t in
luded a joint resear
h and development a
tivity on embedded sys-

tems testing. The Fa
ulty of Te
hni
al S
ien
es on UNS (FTN) has a long-time

experien
e in testing of multimedia embedded systems. Their main pro�le is

bla
k-box testing of digital multimedia devi
es (digital TVs, set-top-boxes, et
.).

The Department of Software Engineering on SZTE (DSE) has been working on

improving testing quality using white-box testing methods. The goal of this

R&D a
tivity is to ex
hange knowledge and jointly develop a method or meth-

ods spe
i�
 to embedded systems in whi
h white-box testing methods support

bla
k-box methods, resulting in an improved quality of the tests implying higher

quality of the produ
ts.

This survey serves as a base of this R&D a
tivity. The goals of this survey

are

∗
Additional authors of the paper: Gerg® Balogh

†
, Szabol
s Bognár

†
, Ivan Kastelan

‡
, Jelena

Kova
evi

‡
, Kornél Muhi

†
, Csaba Nagy

†
, Miroslav Popovi

‡
, Róbert Rá
z

†
, István Siket

†
,

Péter Varga

†

1

• to sear
h for previous works that utilizes bla
k-box or white-box testing

te
hniques or their
ombination in embedded system environment;

• to evaluate and
lassify these works by some de�ned evaluation and
las-

si�
ation
riteria, whi
h helps sele
ting those ones that
an be a base of

the to be de�ned methodologies of the R&D a
tivity;

•
ompare di�erent works by their appli
ability and potential in using them

in embedded systems environment.

The paper assesses the state of the art and enumerates a number of possibly ap-

pli
able methods and solutions. Later on the proje
t the general and spe
ialized

methodologies will be
reated using this do
ument as the sour
e of knowledge.

1 Introdu
tion

In this survey we try to assess the state of the art of embedded systems software

testing. Testing is an important task in software development, and di�erent

ir
umstan
es entitles for di�erent problems and di�erent solutions. Embedded

systems are spe
ial types of systems with spe
ial attributes (e.g. the software

and hardware has more in�uen
e on ea
hother and
annot be entirely separated),

thus general testing methodologies
an only be applied by limitations. This

survey
olle
ts and evaluates a number of existing testing methods and tools

that
ould be applied to test embedded systems.

In the rest of this se
tion some ba
kground on software testing and embedded

systems testing is given. In Se
tion 2 we des
ribe the sear
h methodology we

applied when assessing the state of the art. In Se
tion 3 the
riteria used to

evaluate and
ompare di�erent solutions are given. In Se
tion 4 the methods,

solutions, and tools that
ontribute to embedded systems testing are listed and

evaluated a

ording to the
riteria. In se
tions 4.1 and 4.2 bla
k-box and white-

box methods are assessed. In Se
tion 4.3 methods that
ombine bla
k-box and

white-box elements are des
ribed and evaluated. In Se
tion 4.4 some tools that

provides support for the above methods are listed. In Se
tion 5 a
omparison

of the di�erent methods and/or tools is given. Finally, in Se
tion 6 we draw

on
lusions.

1.1 About Testing

Software testing is a very important risk management task of the software de-

velopment proje
t. With testing, the risk of a residing bug in the software
an

be redu
ed, and by rea
ting on the revealed defe
ts, the quality of the software

an be improved. During testing di�erent fun
tionalities, behavior, or quality

attributes of the software
an be
he
ked and assessed.

Tests
an be
ategorized by many point of view. Using stati
 testing any

written workprodu
t (in
luding sour
e
ode) of the development pro
ess
an

be examined without exe
uting the software. Dynami
 te
hniques examine the

software itself by exe
uting it. Amongst many, there are two basi
 types of

dynami
 test design te
hniques: bla
k-box and white-box te
hniques.

2

1.1.1 Bla
k-box testing

The bla
k-box test design te
hnique
on
entrates on testing the fun
tionalities

and requirements of the software without having any knowledge on the stru
ture

of the program. The te
hniques take the software as a bla
k box, examine �what�

the program does and do not intrerested in the �how?� question. The bla
k-

box te
hniques test the software against some spe
i�
ation. The input and

pre
onditions of the test
ases are determined from some spe
i�
ations of the

program, and whether the test
ase is exe
uted su

essfully or not depends on

the similarity between the expe
ted output and post
onditions of the test
ase

and the a
tual output and post
onditions of the test
ase exe
ution.

Bla
k-box Testing is one approa
h for automated fun
tional testing in TV

and multimedia te
hnology. It
ontains both software and hardware
omponents

o�ering a wide range of possibilities for testing of integrated DTV systems,

digital satellite and terrestrial re
eivers (set-top-box - STB), DVD and blu-ray

players. It
an be used for testing of video and audio quality, measurement

of ele
tri
al values
hara
teristi
 for AV signals, automated navigation through

menus, for providing signal feeds, performing
apturing and displaying of video

and audio
ontent, for storage of test results in various formats in a �le system

or database, generating test reports, et
.

As it is intended for fun
tional testing, it ignores internal me
hanisms of the

system or
omponent and fo
uses spe
i�
ally on the outputs generated as the

system response to spe
i�
 inputs and
onditions of test exe
ution.

Exe
ution of tests
an be manual, semi-automati
 and automati
 tests, and

tests
an be
arried out in referen
e systems (SUT against golden referen
e sys-

tem) and in systems without a referen
e devi
e (
omparison against previously

aptured referent AV �les).

In this approa
h, di�erent types of input devi
es (generators), one or more

SUTs (System Under Test), and audio/video grabber devi
es are used. Flexible

on
ept is needed to expand the fun
tionality of devi
es through expansion and

modi�
ation of devi
es parameters and
ommands.

For this purpose, available equipment whi
h user possesses in-house
an be

used, su
h as: AV signal generators (Fluke, Quantum, AudioPre
ision, and other

supported devi
es), a
quisition devi
es (grabber
ards), RC (Remote Controller)

emulators (RedRat), instrumentation for ele
tri
al measurements, and power

supplies (Agilent, Hameg, Tektronix, et
.).

Software part of Bla
k Box Testing is a PC based appli
ation for
ontrol,

development and exe
ution of automated tests. The appli
ation is installed

on a PC and
an be
onne
ted with all the generators through interfa
es they

support (RS232, LAN, USB, GPIB, et
.). The appli
ation allows sending of

spe
i�

ommands to adjust parameters of the generated signal. The appli
ation

an also send
ommands to the SUT (over RC emulator, RS-232, LAN, et
.)

bringing it into a desired state, required by a test s
enario (e.g. quality of

image brightness on CVBS input), followed by a
quisition of video signal by

the dedi
ated grabber devi
e. Later on, the test
ontinues with analysis of

the
aptured SUT output against previously de�ned audio or pi
ture referen
es

(�golden referen
e�), grabbed from the referent devi
e, using de�ned algorithms

for video or audio quality assessment. Thus, the results of the test are obtained

based on a de�ned limit of deviation of the grabbed sequen
e
ompared to the

referen
e.

3

Types of testing in Bla
k Box Testing:

• Manual testing

• Semi-automati
 testing

• Automated testing

Manual testing requires that all steps of the test are
arried out manually by

tester, in a

ordan
e with the des
ription given in the test s
enario. Appli
ation

in a step by step manner displays messages with des
ription of ea
h step that

needs to be
arried out; upon the step exe
ution the tester resumes the test until

all test steps are a

omplished. At the end the appli
ation prompt window pops

up with a question on the test result, in
luding a �eld where the tester
an enter

a
omment. Evaluation of the results is performed post-run by a professional

based on visual observations. The major di�eren
es between semi-automati

and automated testing are that at the former the tester de
ides on the result

of the testing (like in manual tests) and the system performs automati

ontrol

and management of deployed devi
es, whereas at the latter algorithms built into

test system makes de
ision on the test results. In the
ase of automated tests

the
riteria for de
ision making (PASS, FAIL and others) are set by the test

requirements. The
riteria are forwarded to the test management me
hanism

built into the
ontrol appli
ation as a parameter used to settle on whether the

test passed or failed. Automated testing of integrated DTV systems presumes

fun
tional testing of supported interfa
es. Devi
es generating video and audio

ontent intended for testing of ea
h spe
i�
 interfa
e are
onne
ted to SUT,

whi
h performs post-pro
essing of the
ontent. After the a
tions of the prede-

�ned test s
enario are a

omplished the resultant SUT output is grabbed from

the TV motherboard and its
ontent is veri�ed against the referen
e. Using

additional analogue and digital generators RF fun
tionality test
an also be

overed. Control emulators �tted for the spe
i�
 DTV produ
er enables auto-

mati
 navigation and setting of TV menu options (brightness,
olor, sharpness,

volume, et
.).

Three di�erent ora
les:

• Golden referen
e testing - at this type of testing, referent AV
ontent

(golden referen
e) used to
ompare grabbed images and audio against, is

known in advan
e. Referent AV
ontent is usually obtained by re
ording

of AV output from the referent devi
e whi
h had been approved to op-

erate reliably. Another option for
reating of referent AV
ontent is by

using image and audio editors. Upon the tests' exe
ution, grabbed �les

are
ompared against the referen
es from the devi
e
onsidered to be the

referent one, based on whi
h pass/fail test
riteria had been set.

• Golden devi
e testing - at this type of testing, during the testing itself,

SUT outputs are
ompared against outputs from the devi
e de
lared as

�golden devi
e�. AV outputs from both devi
es are
aptured �live� (at test

run time) and
ompared by an algorithm whi
h de
ides on the test su

ess

(pass/fail).

4

• Testing without referen
e - when the testing is performed without a refer-

ent devi
e or previously re
orded referent �les, this te
hnique
an be used.

It is based on algorithms for image and audio pro
essing for real time de-

te
tion of MPEG like artifa
ts and artifa
ts
aused by signal broad
ast.

Most
ommonly dete
ted artifa
ts are blo
king, blurring, ringing, and �eld

loss for video, and signal absen
e and dis
ontinuities for audio signals.

1.1.2 White-box

The di�eren
e between white-box testing and bla
k-box testing is that while

bla
k-box testing
on
entrates on the question �What does the program do?�,

and has no information about the stru
ture of the software, white-box testing

examines the �How does the program do that?� question, and tries to exhaus-

tively examine the
ode from some aspe
ts. This exhaustive examination is

given by a so-
alled
overage
riterion. The
ode gets exe
uted during testing

of the program to measure
overage.

There are two main types of white-box
overage
riteria:

• Instru
tion
overage de�nes that program points should be exe
uted dur-

ing the tests. What a program point means is dependent on many fa
tors

like granularity (it
an be sole instru
tions, basi
 blo
ks, methods,
lasses,

modules, et
.).

• Bran
h
overage de�nes how di�erent program paths should be exe
uted

or di�erent de
isions should be exer
ised during the tests. Of
ourse, it is

dependent on the de�nition of program point: on instru
tion level we
an

examine de
isions, or even parts of the de
isions (e.g.
ondition
overage);

while on method level the
all graph paths
an be examined.

The
overage information somehow should be extra
ted from the test exe-

ution. There are many possibilities to do this:

• Tra
e generation is an important part of the white box testing. It means

the
ode parts that are rea
hed during the exe
ution of a test
ase. To
al-

ulate tra
eability and
overage we need to follow the run of the program.

Instrumentation and debugging
an provide this following by inserted feed-

ba
k points.

• Code instrumentation is inserting instru
tions that output some informa-

tion about the interesting points of the exe
uted
ode. The information

ontent and the interesting points are vary depending on the
overage

level and
riterion. For example, a simple method
overage requires only

a binary �I was exe
uted� information at the beginning of ea
h methods,

while
ondition
overage requires to output the value of all elementary

ondition of an exe
uted de
ision, and the
ode providing this informa-

tion needs to be inserted into all de
isions (thus all de
ision points needs

to be instrumented). This instrumentation
an be made in sour
e
ode or

in binary
ode.

• Instrumenting the middleware
an be a good solution if we use one mid-

dleware for many programs, and we want to get information from all the

5

programs. The middleware lies between the hardware and the operating

system, and it is built up from libraries and drivers. If we insert meth-

ods into this middleware whi
h send ba
k information from the exe
ution,

than we
an
olle
t some kind of information.

• Modifying exe
ution framework (virtual ma
hine) by extend the
ode of

the framework. This is a software layer between the exe
utable binary

ode and the operating systems. It is an environment in whi
h spe
ial

binary
an be exe
uted. Spe
ial binary is an intermediate language whi
h

is typi
ally
ompiled from simple sour
e
ode. We
an use
all tra
e whi
h

onsists of information of
alled method.

• Debugging
an be made in hardware level, and we need to have debug port

in the hardware or a debugger devi
e, whi
h
an
ommuni
ate with the

hardware in
ommon ports. The debugger
an read the
ode in the hard-

ware and
an insert breakpoints into it and
an store additional
ode or

onta
t to other devi
es whi
h stores additional
ode. When the trap in-

stru
tion is en
ountered, a software interrupt is generated. The additional

instrumentation
ode may then be exe
uted. After it, the original instru
-

tion
ontent is restored. Debuggers provide very detailed information on

the program exe
ution.

These
overage information
an be used to manipulate the exe
uted test set:

we
an sele
t from the test
ases to rea
h a spe
ial aim, or we
an prioritize

them to rea
h a
hosen
overage on the
ode in a shorter time. Other usage of

the
overage information is to
al
ulate other property of the test
ases or the

ode.

Tra
eability is the ability to link produ
t do
umentation requirements ba
k

to stakeholders' rationales and forward to
orresponding design artifa
ts,
ode,

and test
ases. Tra
eability
an be
omputed based on the
onne
tion between

the fun
tionalities, the test
ases and the
overage information.

Reliability provides an estimation of the level of business risk and the like-

lihood of potential appli
ation failures and defe
ts that the appli
ation will

experien
e when pla
ed in operation. We
an
al
ulate the reliability from the

possible lo
ations of the faults, whi
h
an be as
ertained from the
overage and

tra
eability information.

1.2 Di�
ulties of Embedded Systems Testing

In this se
tion the most experien
ed di�
ulties in embedded systems testing are

depi
ted.

A primary
hara
teristi
 of embedded systems is the variety of available

platforms for developers, like the di�erent CPU ar
hite
tures, their vendors,

operating systems and their variants. These systems are not general-purpose

designs, by de�nition. Typi
ally, they are designed for a spe
i�
 task, so the

platform is spe
i�
ally
hosen to optimize that kind of appli
ation. Having this,

the
onsequen
es are more di�
ulties for embedded system developers, harder

debugging and testing, sin
e di�erent debugging tools are required for di�erent

platforms [1℄.

The development of embedded systems is more fo
used on testing and system

evaluation than desk-top systems. In embedded systems, errors and failing

6

behaviour
an stay unnoti
ed for quite a while, only until things like servi
e

failure or a devi
e whi
h is not responding appear in embedded systems. Of

ourse, these errors and failures
an be
orre
ted on time, so that no problems in

systems o

ur. In order to a
hieve this behaviour, or to at least improve a
ertain

systems behaviour, it is ne
essary to follow through with system monitoring and

to analyze the system post-mortem [48℄.

Embedded systems have be
ome widely spread and popular,
ontrolling a

vast variety of devi
es. For fun
tional and error
orre
tness validation of these

systems, the most
ommonly used method is software testing. E�e
tive testing

te
hniques
ould be helpful in improving dependability of embedded systems,

and therefore developing su
h testing te
hniques
an be a
hallenge [60℄.

Embedded systems
onsist of software layers. Appli
ation layers utilize ser-

vi
es provided by underlying system servi
e and hardware support layers, while

a typi
al embedded appli
ation
onsists of multiple user tasks. System failures

in �eld appli
ations
an be
aused by two di�erent kinds of intera
tions, those

that o

ur between appli
ation and lower layers, and those that o

ur between

various user tasks initiated by the appli
ation layer. In embedded systems, a

parti
ularly di�
ult problem in the testing domain
an be the �Ora
le problem�.

Ora
le automation is
ompli
ated by the un
ertain determination of expe
ted

outputs, for given inputs. This
an o

ur due to the multiple tasks whi
h
ould

have a non-deterministi
 output.

There are many di�erent
lasses of real-time embedded systems. For exam-

ple, hard real-time embedded systems have stri
t temporal requirements, and

in
lude safety
riti
al systems su
h as those found in avioni
s and automotive

systems. Soft real-time embedded systems, in
ontrast, o

ur in a wide range

of popular but less safety-
riti
al systems su
h as
onsumer ele
troni
 devi
es,

and tend not to have su
h rigorous temporal
onstraints.

Sin
e embedded systems are usually real-time systems as well, its
orre
t-

ness of exe
ution is not only
hara
terized by its logi
al
orre
tness, but by

moment when the result is produ
ed as well, espe
ially in the
ase of hard real-

time systems. Thus, not only when the expe
ted result is missing, but also

when the expe
ting result is produ
ed but outside the period de�ned by timing

onstraints, the system is
onsidered as failing.

As the failing behaviour is not a

eptable for many embedded systems,

spe
i�
ally safety-
riti
al systems, the testing of meeting timing
onstraints is

equally important as testing fun
tional behaviour of these systems.

Some
hara
teristi
s of embedded world are making the testing pro
ess of

embedded systems slightly di�erent than testing systems use in other �elds:

• Platforms for exe
ution and running appli
ation are usually separately

developed

• Wide spe
tre of development ar
hite
tures

• Cross-development environments impa
ted by existen
e of a number of

exe
ution platforms

• Limited resour
es and tight spa
e for timing
onstraints on the platform

• Implementation paradigms
an be diametri
ally di�erent

• Frequently un
lear design models

7

• New quality and
erti�
ation standards

Testability and measurability of an embedded system is often a�e
ted by

these issues, what is the main reason for testing su
h systems to be so di�
ult

and thus
onsidered as the weakest point of development pro
ess. Having this

in mind, it is natural that more than 50 per
ent of total development e�ort is

spent in testing embedded systems, espe
ially the systems whi
h development is

months behind the expe
ted s
hedule, whi
h is also more than 50 per
ent [21℄.

Having
omplex embedded designs with frequently
hanged requirements,

the testing of real-time embedded systems is parti
ularly di�
ult. They usually

require a number of rigorous white-box (stru
tural) and bla
k-box (fun
tional)

testing modules, as well as the integration testing before releasing them to mar-

ket. The fun
tional testing is usually more important than stru
tural, and sim-

ilarly, the integration testing is more
hallenging task than module testing, and

even more, fun
tional integration testing requires separate test s
ripts generated

based on the system requirements [58℄.

2 Sear
h methodology

To
olle
t valuable information for this survey paper we sear
hed for previ-

ous works (papers and tools)
onne
ting bla
k-box and white-box te
hniques

(so
alled gray-box testing), or applying su
h te
hniques in embedded systems

environment.

As a �rst step, we
olle
ted in-house knowledge:
reated a list of relevant

papers and tools that had been reviewed or applied in previous resear
h and

development a
tivities. Next, Google and Google S
holar sear
hers were used to

�nd s
ienti�
 arti
les and
ase studies. We started to sear
h with basi
 terms as

�graybox�, �gray box�, �gray-box�, �graybox testing�, �graybox pro
ess�, �graybox

testing pro
ess�. Unfortunately, the found arti
les showed that these terms are

widely used but note not only those te
hniques we are interested in. As a result,

very few relevant papers were found. The next terms we were sear
hing for

were �whitebox helped bla
kbox testing� and �whitebox aided bla
kbox testing�.

These sear
hes also resulted in a huge number of hits. By �ltering out irrelevant

ones, many papers were left. Unfortunately, after pro
essing these papers we

had to realize that most of them
on
entrated on the results of applying su
h

methods and not on the elaboration or explanation of the testing pro
esses they

used.

At this point we narrowed sear
h by making the sear
h terms more spe
i�

to the R&D a
tivity we wish to perform. As
ode
overage is de
ided to be

used in the proje
t, we started to sear
h for �
overage aided bla
kbox testing�

and �
overage aided testing�. There were mu
h less hits than with the previous

more general sear
h terms, but �nally these papers are found to be very relevant

ones.

After trying to �nd
omplex papers and solutions that �t to our goals, we

started to
olle
t relevant information one by one to the following terms: �white-

box testing�, �
ode
overage�, �instrumentation�, �model-based testing� and �em-

bedded system testing". With these term we found a huge amount of arti
les,

papers, reports, tools and
ase studies. The �rst sele
tion were based on the ab-

stra
ts on the papers. The introdu
tion and
on
lusion se
tions of the sele
ted

8

papers were read, and those papers that were not proved to be interesting were

�ltered out.

Later, as the goal of the R&D a
tivity be
ame
learer, we added �test gener-

ation� as a sear
h term, whi
h resulted in works mostly
on
erning model based

testing, random testing, automative test generation, symboli
 exe
ution, and

some pro
esses that use them.

As testing and debugging are
lose to ea
h other (although they are di�er-

ent a
tivities, both debugging and white-box testing are based on the program

ode and deals with exe
ution data), �embedded system debug� terms were also

sear
hed and a few relevant papers were found.

We also pro
essed the referen
e lists of the relevant papers we found. These

referred to arti
les usually des
ribing the basi
s of some te
hniques, or to dif-

ferent tools that utilize the des
ribed te
hnique.

As the last step, tools supporting automati
 test generation and/or test

exe
ution are sear
hed and pro
essed. Sear
h terms that were in
luded for

this purpose were �automated test generation tool�, �automated test exe
ution

tool�, and �integrated test generation and test exe
ution tool�. Large amount

of tools were found using these terms, and later �ltered by sele
ting some of

them a

ording to given short des
riptions and spe
i�
ations. In order to get

more pre
ise information and to improve assessment of sele
ted tools, more

detailed do
uments addressing these tools (e.g. spe
i�
ations, tutorials, et
.)

were sear
hed and pro
essed.

At the last phase of tools assessment, still missing information of key impor-

tan
e for later evaluation and
omparison of examined existing solutions, were

sear
hed by
ombining terms des
ribing the information with the tool name.

For some tools, when none of des
ribed method gave us the information, the

tool was tried out using free (a
ademi
) li
en
es or versions that are free for

evaluation in the
ase they existed.

3 Classi�
ation and evaluation
riteria

To evaluate and
lassify, and espe
ially to
ompare the previous works, we had

to set up some
riteria.

At the beginning, we started to evaluate the arti
les without any �xed points

of view. After pro
essing some relevant papers, we
ompared their
ontent and

tried to list similarities and di�eren
es. This list were the base of setting up the

lassi�
ation and evaluation
riteria.

Classi�
ation of methods/evaluation
riteria:

input type Gives the input of the evaluated method. It
an be a model, the

sour
e
ode, the binary, or various other representations of the system

under test.

output/result Gives the output and/or result of the evaluated method. It
an

be a set of new or sele
ted test
ases, prioritization of test
ases,
overage

information, test exe
ution results, or many other things, depending on

the type of the method.

programming language This
riterion denotes whether the evaluated method

is spe
i�
 to some programming languages or language families, or it is

9

general in the means that
ould be (even if a
tually it is not) applied to

any programming languages.

implemented/tool support This indi
ates whether the method is implem-

ented fully or partially, or there are tools that supports this method.

applied in real environment An important property of a method is whether

it is purely theoreti
al and works only for �toy� programs/environments, or

it has been applied and its appli
ability has been proven in real s
enarios.

spe
i�
 to embedded systems Whether the evaluated method is spe
i�
 to

embedded systems environment, or it is general and
an be e�e
tively used

not only in embedded systems.

use some
overage measure Indi
ates whether the method uses some kind

of
overage values (e.g.
ode or fun
tional
overage) as input.

omputes some
overage measure Indi
ates whether the method
omputes

some kind of
overage values (e.g.
ode or fun
tional
overage) as output.

instrumentation te
hnique If instrumentation is used in the method, this

point gives the instrumentation te
hnique (e.g. sour
e
ode, binary, et
.)

requires sour
e
ode Indi
ates if the method requires the sour
e
ode of the

system under test, or works from some other test basis.

BB testing method(s) This point indi
ates the general bla
k-box testing meth-

ods that are spe
ialized in the evaluated solution.

makes prioritization/sele
tion This indi
ates whether the method in
ludes

some test
ase prioritization and/or sele
tion fun
tionalities, and shows

what kind of sele
tion / prioritization is used.

prioritization/sele
tion based on Shows the base measure or data of the

used test
ase prioritization/sele
tion te
hniques (e.g. extent of
ode
ov-

ered, time required for exe
ution, et
.).

4 Assessment

In this se
tion a detailed assessment of relevant papers and tools
an be found.

We separately evaluate bla
k-box, white-box, and gray-box te
hniques and tools.

At the end of the free-format evaluation of a paper, we give the answers to the

lassi�
ation and evaluation
riterion in a table.

4.1 Bla
k-box

In this se
tion papers des
ribing some bla
k-box testing methods/a
tivities are

assessed. The fo
us is on those te
hniques that are more frequently or
an more

probably be used in embedded system testing.

10

Graph Transformations for Model-based Testing [13℄

This paper presents an extended heuristi
 and a generi
 implementation of

the
lassi�
ation tree. It uses the
lassi�
ation-tree transformer (CTT) tool to

a

omplish.

The
lassi�
ation-tree method is an instan
e of partition testing where the

input domain of the test obje
t is split up under di�erent aspe
ts, usually
orre-

sponding to di�erent input data sour
es. The di�erent partitions,
alled
lassi-

�
ations, are subdivided into (input data) equivalen
e
lasses. Finally di�erent

ombinations of input data
lasses are sele
ted and arranged into test sequen
es.

The CTT tool needs the raw
lassi�
ation tree (as a model made in Mat-

lab/Simulink/State�ow; raw
lassi�
ation trees are automati
ally
reated by

the model extra
tor) as input from the model-based development, and pro-

vide a
omplete
lassi�
ation tree. Then this
omplete tree
an be used to

generate model-based test s
enarios by exploration. This extension is a tree-

transformation with
lass de�nitions to partition the value spa
e of input signals.

For this test design step a number of heuristi
s have been developed whi
h led

to further automation steps:

• Data type related heuristi
s: e.g. the
lassi�
ation of a Boolean signal is

set up by two
lasses true and false or enumeration types are
lassi�ed by

setting up a
lass for ea
h enumeration value.

• Problem-spe
i�
 partitioning heuristi
s: e.g. there is an interval of a vari-

able's values, but there is a distinguished range of it, and a fun
tionality

an't be laun
h if the a
tual value is out of this range.

• General testing heuristi
s.

Besides, further tree transformations may be applied for stru
ture re�nement

to simplify the tree. The transformation rules must be
olle
ted in sets to build

up a library of test heuristi
s whi
h
an provide tree extension rules for spe
i�

appli
ation domains or di�erent proje
ts.

This paper mentioned that if we use some proper form of
overage we
an

generate more sensible inputs for the tests, but did not elaborate on details.

This approa
h is
ommon in the embedded system development.

input type Matlab/Simulink/State�ow model

output/result
omplete
lassi�
ation-tree

programming language PROGRES

implemented/tool support yes, the CTT tool supports it

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure no

omputes some
overagemeasure no

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) model-based

Makes prioritization/sele
tion no

Model based software testing [20℄

This arti
le shows and explains the main streams of the model-based testing.

11

Useful models in software testing:

• Finite-state ma
hines:

Finite state ma
hines are appli
able to any model that
an be a

urately

des
ribed with a �nite number (usually quite small) of spe
i�
 states.

A
ommon s
enario: the tester sele
ts an input from a set depending on

the prior results. At any given time, a tester has a spe
i�
 set of inputs

to
hoose from. This set of inputs varies depending on the exa
t "state"

of the software. This
hara
teristi
 of software makes state-based models

a logi
al �t for software testing.

• State
harts:

State
harts are spe
i�
ally address modeling of
omplex or real-time sys-

tems. They provide a framework for spe
ifying state ma
hines in a hierar-

hy, where a single state
an be �expanded� into another �lower-level� state

ma
hine. It involves external
onditions that a�e
t whether a transition

takes pla
e from a parti
ular state, whi
h in many situations
an redu
e

the size of the model being
reated. State
harts are probably easier to

read than �nite state ma
hines, but they are also nontrivial to work with.

• UML:

The uni�ed modeling language models repla
e the graphi
al-style repre-

sentation of state ma
hines with the power of a stru
tured language. It

an des
ribe very
ompli
ated behavior and
an also in
lude other types

of models within it.

• Markov
hains:

Markov
hains are sto
hasti
 models and they are stru
turally similar to

�nite state ma
hines and
an be thought of as probabilisti
 automaton.

Their primary worth is generating tests and also gathering and analyzing

failure data to estimate su
h measures as reliability and mean time to

failure.

• Grammars:

Di�erent
lasses of grammars are equivalent to di�erent forms of state

ma
hines. Sometimes, they are mu
h easier and more
ompa
t represen-

tation for modeling
ertain systems su
h as parsers. They are generally

easy to write, review, and maintain.

• Other: see in [16℄

It gives proper terminology and examples, make a review of the MBT's

role. It's aim to give an approa
h to the reader about the model-based testing

methods and its fun
tionality.

This paper not deals with
overage
riteria, but tells some form of
overage

that
an be rea
hed by MBT. The methodology not needs the sour
e
ode to

work. It needs only some kind of model. It
an be applied widely in software

development.

12

input type some kind of model

output/result usually test
ases, s
enarios

programming language none

implemented/tool support many tools supports

applied in real environment yes

spe
i�
 to embedded systems no, but also used there

use some
overage measure not
ommon

omputes some
overagemeasure model, path
overage

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) model-based, sometimes with random

inputs

Makes prioritization/sele
tion no

MaTeLo: Automated Testing Suite for Software Validation [29℄

This paper presents the MaTeLo software, a model-based fun
tional testing

devi
e, and its advantages, options and obje
tives. The developers not meant to

make a devi
e that fully tests a system, but to test a system to make it usable

in the future without defe
ts.

This devi
e
ontaining the follow issues:

• sele
ting relevant test
ases:

MaTeLo is generating the Test Suite from the Usage Model. The Test

Suite
an be analyzed by the MaTeLo system with a report generation, in

order to generate a relevant Test Suite.

• giving the a

eptan
e
riteria of the testing and de�nition of a test stop-

ping
riteria:

MaTeLo supports proje
t manager to manage the test
ampaign. He will

use the report's fun
tions of MaTeLo to foresee the end of the proje
t

and so the delivery date of the system for
ustomers. For tests, MaTeLo

stores the model and
omputes some
overage
riteria to give the satisfying

onditions.

• helping the di�erent development strategies:

The industry is heightened at di�erent stages regarding testing, and the

MaTeLo proje
t is
ommitted to promote the use of statisti
al tools &

methods to answer European industries' needs.

• test automation:

MaTeLo provide support to build the software test plan and generate the

usage model, than generate the test suite from it. MaTeLo provides the

apability of automati
 exe
ution of test suite and stores test results in a

database to allow further analysis.

It uses Markov-
hains to generate test
ases, be
ause these give the proper

user behavior models. The states of the Markov-
hain represents the states of

the system and the transitions in the Markov-
hain refers to the user a
tions,

so the state-
hanges in the system.

13

The MaTeLo
ontains many options to enhan
e model-based fun
tional test-

ing. It
an provide the usage model from the spe
i�
ation, generate test
ases

from it in TTCN-3 or textual formats, and
al
ulate
overage on spe
i�
ation

and model level.

input type some kind of model

output/result test
ases, s
enarios

programming language TTCN-3

implemented/tool support it is a tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure spe
i�
ation, ar
 and state

instrumentation te
hnique no

requires sour
e
ode yes

BB testing method(s) Markov-model-based

Makes prioritization/sele
tion
an make sele
tion

Automati
 test
ase generation from requirements spe
i�
ations for

real-time embedded systems [15℄

In this paper, the authors present a method to generate test
ases, using

the requirements spe
i�
ations for event-oriented, real-time embedded systems.

The requirements do
umentation and test
ase generation a
tivities make up

the initial steps in their method to realize model-based
odesign. This
ode-

sign method relies on system models at in
reasing levels of �delity in order to

explore design alternatives and to evaluate the
orre
tness of these designs. As

a result, the tests that we desire should
over all system requirements in order

to determine if all requirements have been implemented in the design. The set

of generated tests will then be maintained and applied to system models of in-

reasing �delity and to the system prototype in order to verify the
onsisten
y

between models and physi
al realizations.

In this
odesign method, test
ases are used to validate system models and

prototypes against the requirements spe
i�
ation. This ensures
oheren
e be-

tween the system models at various levels of detail, the system prototype, and

the �nal system design. Automating the test
ase generation pro
ess provides a

means to ensure that the test
ases have been derived in a
onsistent and obje
-

tive manner and that all system requirements have been
overed. The goal is to

generate a suite of test
ases that provide
omplete
overage of all do
umented

system requirements.

The paper
ontains a simple example of a
ontroller for a safety inje
tor of

a rea
tor
ore. The system monitors pressure and adds
oolant if the pressure

drops below a given threshold.

The di�
ulty of this problem has been dis
ussed in this paper and a heuristi

algorithm is presented to solve the problem.

14

input type requirements spe
i�
ation

output/result test suite

programming language C

implemented/tool support yes

applied in real environment no

spe
i�
 to embedded systems yes

use some
overage measure yes

omputes some
overagemeasure no

instrumentation te
hnique -

requires sour
e
ode yes

BB testing method(s) spe
i�
ation based

Makes prioritization/sele
tion
an make sele
tion

Prioritization/sele
tion based on spe
i�
ation

Automati
 test generation: a use
ase driven approa
h [45℄

The authors propose a new approa
h for automating the generation of sys-

tem test s
enarios from use
ases in the
ontext of obje
t-oriented embedded

software and taking into a

ount tra
eability problems between high-level views

and
on
rete test
ase exe
ution. The method they develop is based on a use

ase model unraveling the many ambiguities of the requirements written in nat-

ural language. They build on UML use
ases enhan
ed with
ontra
ts (based on

use
ases pre- and post
onditions). The test obje
tives (paths) generation from

the use
ases
onstitutes the �rst phase of their approa
h. The se
ond phase

aims at generating test s
enarios from these test obje
tives. The test
ases are

generated in two steps: Use
ase orderings are dedu
ed from use
ase
ontra
ts;

and then use
ase s
enarios are substituted for ea
h use
ase to produ
e test

ases. While in the �rst step the use
ases model handles high level
on
erns,

in the se
ond step, the data
omplexity (numeri
al data, obje
t models, OCL

onstraints, et
.) is taken into a

ount with the use of use
ase s
enarios. The

approa
h has been evaluated in three
ase studies by estimating the quality of

the test
ases generated by their prototype tools.

input type UML use
ases

output/result test suite

programming language C++

implemented/tool support implemented, but no tool

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure use
ase
overage

omputes some
overagemeasure -

instrumentation te
hnique -

requires sour
e
ode (yes/no) no

BB testing method(s) model-based

Makes prioritization/sele
tion -

Prioritization/sele
tion based on -

A Test Generation Method Based On State Diagram [39℄

This paper aims to resolve the following resear
h issues:

15

• minimize size of test
ases and test data derived from extended state
hart

diagram,

• maximize a number of nodes
overage, and

• minimize total time of test
ase generation from diagrams.

The paper proposes an e�e
tive method to prepare and generate both of test

ases and test data,
alled TGfMMD method. The TGfMMD method is devel-

oped to verify the state
hart diagram before generation and generate both of

test
ases and test data from extended state
hart diagram. The extended state

diagrams is a Mealy Ma
hine diagram. The Mealy Ma
hine diagram is extended

from the UML state diagram. Both of these diagrams are used to des
ribe the

behavior of systems but di�er in the sense of Mealy Ma
hine diagram has input

and output while normal state diagram does not have.

input type state diagram

output/result test
ases

programming language -

implemented/tool support TGfMMD

applied in real environment no

spe
i�
 to embedded systems no

use some
overage measure state diagram
overage

omputes some
overagemeasure diagram

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) method based

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on state diagram
overage

A Pra
ti
al Approa
h for Automated Test Case Generation using

State
harts [52℄

This paper presents an approa
h for automated test
ase generation using a

software spe
i�
ation modeled in State
harts. The steps de�ned in this approa
h

involve: translation of State
harts modeling into an XML-based language and

the PerformCharts tool generates FSMs based on
ontrol �ow. State
harts ex-

tend state-transition diagrams with notions of hierar
hy (depth), orthogonality

(parallel a
tivities) and interdependen
e/syn
hronization (broad
ast
ommuni-

ation). State
harts
onsist of states,
onditions, events, a
tions and transitions.

These FSMs are the inputs for the Condado tool whi
h generates test
ases.

A
ase study was on an implementation of a proto
ol spe
i�ed for
ommuni-

ation between a s
ienti�
 experiment and the On-Board Data Handling Com-

puter of a satellite under development at National Institute for Spa
e Resear
h

(INPE). The approa
h was applied on a simulated version of a satellite experi-

ment software. The results were satisfa
tory.

16

input type State
hart

output/result test
ases

programming language C++

implemented/tool support implemented, but no tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure no

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) -

Makes prioritization/sele
tion -

Prioritization/sele
tion based on -

Testing Con
urrent Obje
t-Oriented Systems with Spe
 Explorer [9℄

The basi
s of the Spe
Explorer is the interfa
e automaton [3℄, whi
h separates

the input and the output edges in the nodes and uses FIFO stru
ture to explore

the input model. Spe
Explorer dis
overs the spe
i�
ation (high-level or sour
e

ode) to build the interfa
e model and than explores it to build the model whi
h

will be the basis of the test
ase generation. Spe
Explorer
an
reate not only

�x s
enarios but dynami
 or in�nite ones as well (e.g.
hat servers) and
an

hoose series of method
alls whi
h do not violate the system's operation and

whi
h are relevant for the users' test inputs.

It uses the next two methods for simplify the in�nitive systems:

• grouping statuses: merge the statuses whi
h are indistinguishable in a user

de�ne aspe
t;

• state-dependent parameter generating: de�nes parameter-intervals whi
h

an help us to sele
t the proper input values.

The result graphs
an use as ora
les. To solve the bran
hes Spe
Explorer

use Markov-de
ision logi
. With this, it
an provide a good path and model

overage.

input type spe
i�
ation or model

output/result test s
enarios or a graph

programming language C#, .NET

implemented/tool support Visual Studio 2010 Ultimate and above,

Spe
Explorer

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure behavioral, bran
h

omputes some
overagemeasure
ode

instrumentation te
hnique .NET assembly level, binary inst.

requires sour
e
ode yes

BB testing method(s) Markov-model-based

Makes prioritization/sele
tion
an make both

Prioritization/sele
tion based on some user-de�ned aspe
t

17

Unit Tests Reloaded: Parameterized Unit Testing with Symboli
 Ex-

e
ution [53℄

We
an �nd proper inputs for parametrized unit tests (PUTs) during sym-

boli
 exe
ution thus we
an rea
h high model
overage and in some
ase we
an

look this PUTs as spe
i�
ation. During symboli
 exe
ution we explore the sym-

boli
 variables and develop them with proper values. The symboli
 variables

are mathemati
al stru
tures that
ontains every variable from above in the path

whi
h the symboli
 variable depends on.

PUTs
an be provided from existing unit test or we
an write brand news

from the implementation.

In this paper these tools mentioned as providing symboli
 exe
ution:

• Java PathFinder with some extensions,

• .NET XRT.

The next two devi
e was developed by Mi
rosoft Resear
h for automati

unit test generation: UnitMeister and AxiomMeister. These devi
es
an make

new PUTs from implementation, parametrize existing UTs and refa
tor existing

PUTs. The symboli
 variables are expressions over the input symbols. The

symboli
 exe
ution builds up a dependen
y path between the variables thus it

an
ompute the values for all the variables by
hoosing the proper input values.

these dependen
y paths
an
ontain jun
tions (so we
all them trees more than

paths) and the tree-exploration or tree-exe
ution makes as mu
h UTs as the

number of the bran
hes.

We
an spe
ify the minimal number of test s
enarios by de�ne the proper

inputs so these s
enarios
an
over all the paths. A path is inappropriate if we

an't �nd input for it. For example it will newer be
hosen or in the bran
h

the value is always false, et
. In this
ase we
an drop this bran
h even from

the system. The symboli
 exe
ution unfolds all the loops and re
ursions, so

it
an provide in�nite number of paths. For prevent this, we
an use several

te
hniques. One of these is if we
an give a number for limitation for running

the loops by analyzing the behavior of the loops and gives a maximum number

of the exe
ution of the loop. We
an use mo
k obje
ts for imitate the behavior

and fun
tions of the software
omponents. Though the mo
k obje
ts
ontains

only a sli
e of the fun
tionalities, if we
an generate these automati
ally, we
an

have unlimited number of mo
k obje
ts, ea
h with di�erent fun
tionality.

For this
ase the symboli
 mo
k obje
ts are the best
hoi
es. In these obje
ts

the fun
tionalities are spe
i�ed like the values of the symboli
 variables (in de-

penden
y trees). We
an represent ea
h pro
edure
alls result by mo
k obje
ts.

18

input type any kind of unittests or implementation

output/result Parametrized Unit tests

programming language Java, .NET

implemented/tool support PathFinder, XRT, UnitMeister, Ax-

iomMeister

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure input
overage

omputes some
overagemeasure model, path
overage

instrumentation te
hnique no

requires sour
e
ode
an use the sour
e
ode also

BB testing method(s) BB, GB

Makes prioritization/sele
tion BB, GB

Prioritization/sele
tion based on BB, GB

Feedba
k-dire
ted Random Test Generation [47℄

This paper presents a te
hnique that improves random test generation by

in
orporating feedba
k obtained from exe
uting test inputs as they are
on-

stru
ted. Build inputs in
rementally by randomly sele
ting a method
all to

apply and �nding arguments from among previously-
onstru
ted inputs. As

soon as an input is built, it is exe
uted and
he
ked against a set of
ontra
ts

and �lters. The result of the exe
ution determines whether the input is redun-

dant, illegal,
ontra
t-violating, or useful for generating more inputs. Inputs

that
reate redundant or illegal states are never extended into tests
ontaining

more steps. The te
hnique outputs a test suite
onsisting of unit tests for the

lasses under test in obje
t-oriented systems. This te
hnique is implemented

in RANDOOP, whi
h is a fully automati
 system, requires no input from the

user (other than the name of a binary for .NET or a
lass dire
tory for Java),

and s
ales to realisti
 appli
ations with hundreds of
lasses. It
an be e�
iently

used in the sparse and global sampling. Inputs
reated with feedba
k-dire
ted

random generation a
hieve equal or higher blo
k and predi
ate
overage than

the systemati
 te
hniques. Feedba
k-dire
ted random testing does not require

a spe
ialized virtual ma
hine,
ode instrumentation, or the use of
onstraint

solvers or theorem provers.

The basi
s if this te
hnique is that an obje
t-oriented unit test
onsists of

a sequen
e of method
alls that set up state (su
h as
reating and mutating

obje
ts), and an assertion about the result of the �nal
all. Ea
h method have

input arguments, whi
h
an be primitive values or referen
e values returned by

previous method
alls. The feedba
k-dire
ted random test generation te
hnique

hooses a method randomly from the method list and generating inputs for it.

When the input is generated, the method is exe
uted and measured. If the

result violates any
onstraint, the methods is dropped. If not, a new method

is
hosen from the available set. This set is made up from the methods that

are rea
hable after the run of the previous one. The te
hnique is iterating these

steps until the program is terminating. The result is a test sequen
e from valid

method
alls and the proper inputs. As soon as a (sub)sequen
e is built, it is

exe
uted to ensure that it
reates non-redundant and legal obje
ts, as spe
i�ed

by �lters and
ontra
ts.

RANDOOP takes all these steps automati
ally and makes a
omplete test

19

suite of one library by one run.

input type model or sour
e
ode

output/result test suite+inputs

programming language .NET, Java

implemented/tool support RANDOOP

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure method

instrumentation te
hnique none

requires sour
e
ode yes

BB testing method(s) random

Makes prioritization/sele
tion no

Path Oriented Random Testing [28℄

Test
ampaigns usually require only a restri
ted subset of paths in a program

to be thoroughly tested, so we fa
e the problem of building a sequen
e of random

test data that exe
ute only a subset of paths in a program based on ba
kward

symboli
 exe
ution and
onstraint propagation to generate random test data

based on an uniform distribution.

Usual white-box testing approa
hes require only a subset of paths to be sele
ted

to
over all statements, all de
isions or other stru
tural
riteria.

There are also paths whi
h never will be
hosen during the programs operation.

Our approa
h derives path
onditions and
omputes an over-approximation

of their asso
iated sub-domain to �nd su
h a uniform sequen
e. One key advan-

tage of Random Testing over other te
hniques is that it sele
ts obje
tively the

test data by ignoring the spe
i�
ation or the stru
ture of the Program Under

Test. Path testing requires to �nd a test suite so that every
ontrol �ow path is

traversed at least on
e. As every feasible path
orresponds to a sub-domain of

the input domain, path testing
onsists in sele
ting at least one test datum from

ea
h sub-domain with minimalizing the numbers of reje
ts in sele
ted inputs. A

reje
t is produ
ed whenever the randomly generated test datum does not satisfy

the path
onditions.

This paper presents and explains the symboli
 exe
ution, the
onstraint

programing, and gives some example algorithms how to
al
ulate path
ondition

and how to generate path-oriented random test data.

20

input type
ontrol �ow

output/result test suite

programming language SICStus Prolog, C

implemented/tool support implemented, but no tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure path
overage

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) model-based, random input

Makes prioritization/sele
tion no

Adaptive Random Testing [10℄

Adaptive random testing seeks to distribute test
ases more evenly within

the input spa
e. It is based on the intuition that for non-point types of failure

patterns, an even spread of test
ases is more likely to dete
t failures using fewer

test
ases than ordinary random testing.

In re
ent studies, it has been found that the performan
e of a partition test-

ing strategy depends not only on the failure rate, but also on the geometri

pattern of the failure-
ausing inputs. This has prompted the authors of this ar-

ti
le to investigate whether the performan
e of random testing
an be improved

by taking the patterns of failure-
ausing inputs into
onsiderati.

This study assumes that the random sele
tion of test
ases is based on a

uniform distribution and without repla
ement. Elements of an input domain

are known as failure-
ausing inputs, if they produ
e in
orre
t outputs. We use

the expe
ted number of test
ases required to dete
t the �rst failure (referred

to as the F-measure), as the e�e
tiveness metri
. The lower the F-measure the

more e�e
tive the testing strategy be
ause fewer test
ases are required to reveal

the �rst failure. The patterns of failure-
ausing inputs have
lassi�ed into three

ategories: point, strip and blo
k patterns. It
onje
tures that test
ases should

be as evenly spread over the entire input domain as possible.

Adaptive random testing makes use of two sets of test
ases, namely the

exe
uted set and the
andidate set whi
h are disjoint. The exe
uted set is

the set of distin
t test
ases that have been exe
uted but without revealing

any failure; while the
andidate set is a set of test
ases that are randomly

sele
ted without repla
ement. The exe
uted set is initially empty and the �rst

test
ase is randomly
hosen from the input domain. The exe
uted set is then

in
rementally updated with the sele
ted element from the
andidate set until

a failure is revealed. From the
andidate set, an element that is farthest away

(Eu
lidean distan
e) from all exe
uted test
ases, is sele
ted as the next test

ase. There are also various ways to
onstru
t the
andidate set.

The authors make an experiment with many kind of open sour
e programs

in variety of programming languages but all programs have
onverted into C++.

The arti
le gives an example algorithm to show how to generate a
andidate

set and sele
t a test
ases.

21

input type input domain

output/result test inputs

programming language C++

implemented/tool support it is implemented, but have no tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure no

instrumentation te
hnique no

requires sour
e
ode no

BB testing method random

Makes prioritization/sele
tion no

4.2 White-box

In this se
tion, papers that des
ribe methods helping to extra
t some white-box

overage measures are assessed.

Observability analysis of embedded software for Coverage-Dire
ted

validation [14℄

In this paper the authors propose a new metri
 that gives a measure of the

instru
tion
overage in the software portion of the embedded system. Their

metri
 is based on observability, rather than on
ontrollability. Given a set of

input ve
tors, their metri
 indi
ates the instru
tions that had no e�e
t on the

output.

The
overage metri
 being proposed was implemented to handle programs

in the C language. The algorithm was implemented in a two step pro
ess. In

the �rst step they transform the sour
e program by adding for ea
h statement

a
all to a fun
tion. The parser used was
2
 whi
h is a publi
-domain software

program.
2
 works by making an Abstra
t Syntax Tree (AST) of a C program.

The AST
an then be manipulated in several ways su
h as adding or deleting

nodes in it. Finally, after
hanging the AST, the
2
 tool produ
es the C

program for that new AST.

In their
ase, the modi�
ations made are, for ea
h statement, adding one

of several fun
tions to the
ode. Several fun
tions will pro
ess the information

extra
ted from the statement.

Then, in the se
ond step they
ompile the transformed program inside a

framework that will allow several input ve
tors to be run and obtain an overall

estimate of the observability
overage for these ve
tors. They show four exam-

ples they used to test the observability based metri
 being proposed. One of

the program
omputes Fibona

i numbers, one mat
hes a stream of
hara
ters

against a string, one
omputes the Hu�man
ode and the last one implements

the Fast Fourier Transform (FFT). All four were implemented using the C lan-

guage.

This metri
 has great potential to be used in embedded software testing.

There is signi�
ant overhead due to the fa
t that for ea
h statement, a fun
tion

all is made.

22

input type sour
e
ode

output/result per
entage of observed statements

programming language C/C++

implemented/tool support implemented, but no tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure statement
overage

omputes some
overagemeasure statement
overage

instrumentation te
hnique
ode instrumentation

requires sour
e
ode yes

BB testing method(s) -

Makes prioritization/sele
tion -

Prioritization/sele
tion based on -

Flow logi
: a multi-paradigmati
 approa
h to stati
 analysis [46℄

The �ow logi
 is a formalism of stati
 analysis. It separates when and how:

when an estimation of an analysis is a

eptable and how to make the analysis.

It is based in parti
ular on the
onventional use-
ase analysis, border analysis

and abstra
t interpretation. De�nitions in di�erent levels
an be spe
i�ed by

the same formalism. It allows us to use the
onventional te
hniques in stati

analysis. This is the basis of using di�erent paradigms in di�erent parts of the

system a

ording to what paradigm gives the best solution.

The spe
i�
ations of the �ow logi
 are sets of
loses. It is ne
essary to write

these
loses
o-indu
tively. An estimation of an analysis is a

eptable if not

violates any of the
onditions set by the spe
i�
ation. We
an rea
h a good

spe
i�
ation
overage, if sele
ts these kind of analysis.

There are two approa
hes of the �ow logi
:

• abstra
t vs.
omplex,

• su

in
t vs. verbose.

The
omplex spe
i�
ation is syntax-driven, similar to the implementation,

while the abstra
t spe
i�
ation is
lose to the
ommon semanti
s. The verbose

spe
i�
ation reports all the inner �ow information like the use-
ase and the

boarder analysis, while the su

in
t spe
i�
ation deals only with the top level

estimation of an analysis.

input type sour
e
ode, implementation, interfa
e

output/result sets of
loses

programming language none

implemented/tool support no

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure spe
i�
ation

instrumentation te
hnique no

requires sour
e
ode yes

BB testing method(s) use-
ase analysis, border analysis, ab-

stra
t interpretation

Makes prioritization/sele
tion no

23

Boundary Coverage Criteria for Test Generation from Formal Mod-

els [40℄

This arti
le presents a new area of the model-based
overage
riteria, whi
h is

based on the formalism of the boundary-testing heuristi
s. It
an be applied in

every system working with variables and values. It feasible to measure
overage

or to generate test
ases. It is implemented in the B-Z-TESTING-TOOLS tool

suite, whi
h is able to generate test
ases from B, Z or UML/OCL model.

They tried and suggested a number of
overage metri
 in the early develop-

ment:

• Transition
overage or transition-pair
overage for transitions represented

in state-
hart;

• Constraint
overage for abstra
t state ma
hines' behavior-de�ning
on-

straints;

• Disjun
tive Normal Form
overage for states in state-based models, like

B, Z, VDM, where predi
ates provides the behavior.

Besides, there are di�erent analyzing methods to provide the basis for test

generating algorithms, but they aren't used as
overage metri
s. One from these

is the boundary-analysis. The boundary
overage is independent from the stru
-

ture, so it
an be an extension for it. It's suitable for sele
ting or extending the

test
ases generated from stru
tural
overage. This BZ-TT tool suite have spe-

ial possibilities to e�
iently implement the boundary value
omputing method,

and it is
ommonly used for smart
ards and in transport systems. The formal

model used by the BZ-TT is assembled from variables and predi
ates and
an

be
reated from any kind of formal spe
i�
ation.

This arti
le gives a formal de�nition for the boundary values, the boundary

overage, and a test sele
tion algorithm, and gives a parti
ular formal example.

input type formal model

output/result boundary
overage value

programming language B, Z, VDM, UML/OCL

implemented/tool support implemented in BZ-TESTING-TOOLS

applied in real environment yes

spe
i�
 to embedded systems partly

use some
overage measure no

omputes some
overagemeasure boundary

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) no

makes prioritization/sele
tion
an make sele
tion

Prioritization/sele
tion based on boundary
overage

A Dynami
 Binary Instrumentation Engine for the ARM Ar
hite
-

ture [31℄

Dynami
 binary instrumentation (DBI) is a powerful te
hnique for analyz-

ing the runtime behavior of software. There are numerous DBI frameworks for

general-purpose ar
hite
tures, but for embedded ar
hite
tures are fairly limited.

24

This paper des
ribes the design, implementation, and appli
ations of the ARM

version of Pin.

ARM is an a
ronym for Advan
ed RISC Ma
hines. Most implementations

of the ARM ar
hite
ture fo
us on providing a pro
essor that meets the power

and performan
e requirements of the embedded systems
ommunity.

Pin is a dynami
 binary rewriting system developed by Intel. It allows a

tool to insert fun
tion
alls at any point in the program and automati
ally

saves and restores registers so the inserted
all does not overwrite appli
ation

registers. At the highest level, Pin
onsists of a virtual ma
hine (VM), a
ode

a
he, and an instrumentation API invoked by Pintools. The VM
onsists of a

just-in-time
ompiler (JIT), an emulator, and a dispat
her. The JIT
ompiles

and instruments appli
ation
ode, whi
h is then laun
hed by the dispat
her.

Sin
e Pin sits above the operating system, it
an only
apture user-level
ode.

It uses a
ode
a
he to store previously instrumented
opies of the appli
ation

to amortize its overhead. Code tra
es are used as the basis for instrumentation

and
ode
a
hing.

Pin provides transparen
y to any appli
ation running under its
ontrol. All

memory and register values, in
luding the PC, will appear to the appli
ation as

they would had the appli
ation been run dire
tly on the hardware.

To ensure that the VMmaintains
ontrol of exe
ution at all times, and
ontrol

never es
apes ba
k to the original, not instrumented
ode, all bran
hes within

the
a
hed
ode are pat
hed and redire
ted to their transformed targets within

the
ode
a
he.

From an ISA standpoint, system
alls do not present any parti
ular problem

in Pin for ARM, sin
e they
an be exe
uted dire
tly without further intervention

from Pin. However, in order to stay in
ontrol of the appli
ation under all

ir
umstan
es, some system
alls must be inter
epted and emulated instead.

Superblo
ks (single-entry, multiple-exit regions) are used as the basis for

instrumentation and
ode
a
hing in Pin. Just before the �rst exe
ution of a

basi
 blo
k, Pin spe
ulatively
reates a straight-line tra
e of instru
tions that

is terminated by either an un
onditional bran
h, or an instru
tion
ount limit.

One ARM-spe
i�
 tra
e sele
tion optimization we explored was to limit tra
e

lengths to a �xed maximum number of basi
 blo
ks. This optimization redu
es

the tail dupli
ation resulting from
a
hing superblo
ks.

A major
hallenge in many dynami
 instrumentation systems is self-modifying

ode (SMC). Any time an appli
ation modi�es its own
ode region, the instru-

mentation system must be aware of this
hange in order to invalidate, regenerate,

and re-instrument its
a
hed
opy of the modi�ed
ode. The real problem is the

e�
ient dete
tion. Fortunately, ar
hite
tures su
h as ARM
ontains an expli
it

instru
tion that must be used by the software developer in order to
orre
tly

implement SMC.

After these, the arti
le shows a performan
e analysis to Pin for ARM. Finally

it lists out the potential appli
ations.

25

input type embedded system

output/result instrumented system

programming language C

implemented/tool support implemented in Pin for ARM

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure no

omputes some
overagemeasure no

instrumentation te
hnique binary

requires sour
e
ode no

BB testing method(s) none

Makes prioritization/sele
tion no

Automated Formal Veri�
ation and Testing of C Programs for Em-

bedded Systems [36℄

This paper introdu
es an approa
h for automated veri�
ation and testing of

ANSI C programs for embedded systems. Automati
ally extra
t an automaton

model from the C
ode of the system under test. This automaton model is used

for formal veri�
ation of the requirements de�ned in the system spe
i�
ation,

and we
an derive test
ases from this model by using a model
he
ker, too. This

paper spe
i�
ally shows how to deal with arithmeti
 expressions in the model

he
ker NuSMV and how to preserve the numeri
al results in
ase of modeling

the platform-spe
i�
 semanti
s of C.

In this paper the veri�
ation of the SUT is realized in two important inde-

pendent steps:

• In the �rst step the platform-independent semanti
s of the system
an be

veri�ed formally by model
he
king. By verifying all requirements from

the spe
i�
ation, it
an be shown that the C program
onforms to the

spe
i�
ation. Veri�
ations are done with X-in-the-loop method.

• The se
ond step is testing the system by exe
ution of test
ases on the

target platform. It proves whether the platform-spe
i�
 semanti
s of the

program has the same behavior as the model. Test
ases are generated by

model
he
king from the automaton model.

Every step is done in Matlab Simulink.

The model extra
tion is done in the following steps: (1) The C-sour
e
ode

is parsed and by stati
 analysis, the syntax tree of the program is generated.

(2) The syntax tree is used to generate the automaton model by sequentially

pro
essing it and interpreting the semanti
s of the basi
 statements. (3) The

des
ription of the automaton model is given in an automata language.

For the formal veri�
ation of the system the properties from the spe
i�
ation

have to be translated into temporal logi
 formulas. These formulas
an be veri-

�ed on the model with a model
he
ker. Some properties from the spe
i�
ation

are suitable to be
he
ked dire
tly on the extra
ted model.

For the test
ase generation we also use model
he
king te
hniques. The

main purpose of a model
he
ker is to verify a formal property on a system

model. In
ase that the formal property is invalid on a given model, a model

he
ker provides a
ounterexample, whi
h des
ribes a
on
rete path on whi
h

26

the property is violated. This feature of a model
he
ker
an be used to generate

test
ases in a formal and systemati
 way. For �nding suitable test
ases the

hallenge is to �nd appropriate properties (trap properties), that yield spe
i�

paths that
an be used as test
ases.

input type spe
i�
ation

output/result test
ases and veri�
ation information

programming language C

implemented/tool support NuSMV

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure no

omputes some
overagemeasure no

instrumentation te
hnique none

requires sour
e
ode no

BB testing method(s) model
he
king

Makes prioritization/sele
tion no

Using Property-Based Ora
les when Testing Embedded System Ap-

pli
ations [61℄

As prior work in this paper an approa
h for testing embedded systems is

presented, fo
using on embedded system appli
ations and the tasks that
om-

prise them. This arti
le fo
uses on a se
ond but equally important aspe
t of

the need to provide observability of embedded system behavior su�
ient to al-

low engineers to dete
t failures. It presents several property-based ora
les that

an be instantiated in embedded systems through program analysis and instru-

mentation, and
an dete
t failures for whi
h simple output-based ora
les are

inadequate.

The authors presented an approa
h in this paper to help developers of em-

bedded system appli
ations dete
t faults that o

ur as their appli
ations intera
t

with underlying system
omponents. This approa
h involves two data�ow-based

test adequa
y
riteria. First, we use data�ow analysis to identify inter-layer

intera
tions between appli
ation
ode and lower-level (kernel and hardware-

related)
omponents in embedded systems. Se
ond, we use a further data�ow

analysis to identify inter-task intera
tions between tasks that are initiated by the

appli
ation. Appli
ation developers then
reate and exe
ute test
ases targeting

these intera
tions.

The �ora
le problem� is a
hallenging problem in many testing domains,

but with embedded systems it
an be parti
ularly di�
ult. Embedded sys-

tems employing multiple tasks that
an have non-deterministi
 outputs, whi
h

ompli
ates the determination of expe
ted outputs for given inputs. Faults in

embedded systems
an produ
e e�e
ts on program behavior or state whi
h, in

the
ontext of parti
ular test exe
utions, do not propagate to output, but do

surfa
e later in the �eld. Thus, ora
les that are stri
tly �output-based�, may

fail to dete
t faults. So several �property-based� ora
les are presented that use

instrumentation to re
ord various aspe
ts of exe
ution behavior and
ompare

observed behavior to
ertain intended system properties that
an be derived

through program analysis. These
an be used during testing to help engineers

27

observe spe
i�
 system behaviors that reveal the presen
e of faults.

input type program and test suit

output/result test results

programming language C, Java

implemented/tool support no

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure tra
e

omputes some
overagemeasure tra
e

instrumentation te
hnique sour
e
ode, OS, libraries, runtime sys-

tems

requires sour
e
ode yes

BB testing method(s) none

Makes prioritization/sele
tion no

A Model-Based Regression Test Sele
tion Approa
h for Embedded

Appli
ations [7℄

A
ompound model-based regression test sele
tion te
hnique for embedded

programs is proposed in this paper. Also proposed a graph model of the program

under test (PUT). The authors mention to sele
t a regression test suite based on

sli
ing this graph model. They also propose a geneti
 algorithm-based te
hnique

to sele
t an optimal subset of test
ases from the set of regression test
ases after

this sele
tion.

The embedded systems' advan
ement entails the growing
omplexity of the

embedded programs. Obje
t-oriented te
hnologies are being in
reasingly adopted

for development be
ause of the advantages they o�er to handle
omplexity.

Every software produ
t typi
ally undergoes frequent
hanges in its lifetime

to fxing defe
ts, enhan
ing or modifying existing fun
tionalities, or adapting to

newer exe
ution environments. But this means also that the satisfa
tory testing

of the embedded programs has turned out to be a
hallenging resear
h problem.

For testing, we need a huge set of test
ases, whi
h we need to exe
ute for

regression testing. To save the resour
es during regression testing we
an sele
t

a subset from the regression test set and exe
ute only this subset of test
ases.

These are mostly the test
ases that exe
utes the modi�ed parts of a program.

Test
ases whi
h tests a part of the program that has been deleted during a

modi�
ation
an also be removed from the regression test set. Unfortunately,

many test
ases that would dete
t regression errors are not sele
ted so we need

to
hose the test sele
tion method wisely.

There are many test sele
tion algorithms, but only few of them are suitable

for embedded systems. Moreover, if this system is large,
omplex and di�er-

ent parts of it are written in di�erent languages, than the traditional sour
e-

analyzing methods are useless. The new approa
h proposed in this paper is

the model-based regression testing and test sele
tion. The authors use a graph

model that is
onstru
ted with program analysis. This model
an also be used

for prioritizing the regression test
ases and sele
ting an optimal test suite.

Brie�y the di�erent steps involved in the approa
h presented in this arti
le:

• The Intermediate Model Constru
tor
onstru
ts the intermediate model

28

for the original program.

• The Code Instrumenter instruments the original program, and the instru-

mented
ode is exe
uted on the initial test suite by the Program Exe
ution

module.

• The Model Di�eren
er analyzes the modi�ed sour
e
ode and identi�es the

model elements that are modi�ed and tags those elements on the model.

• The Sli
er performs a forward sli
e on the modi�ed marked model to

identify the a�e
ted model elements that need to be retested.

• The Optimizer analyzes additional information about the program
ompo-

nents gathered from the operational pro�le, and prioritizes the test
ases

based on the
riteria used in the operational pro�le module.

• Subset of test
ases than sele
ted.

In the next se
tion this paper shows the inadequa
y of existing graphi
al

models to embedded systems and shows an extended one from them that is

suitable for embedded program's regression test sele
tion. The arti
le shows

the additional features of the model in detailes. These features are the repre-

sentation of the
ontrol �ow, ex
eption handling and information representation

from design models.

The authors also shows a method brie�y for test sele
tion and for the test

suit optimisation.

input type program and test suit

output/result test set

programming language C, Java

implemented/tool support no

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure no

omputes some
overagemeasure model

instrumentation te
hnique sour
e
ode, model

requires sour
e
ode yes

BB testing method(s) model-based

Makes prioritization/sele
tion yes

4.3 Grey-box

In this se
tion white-box aided bla
k-box testing methods (spe
ially,
overage

aided random testing, test
ase prioritization and sele
tion) are assessed.

A
hieving both Model and Code Coverage with Automated Gray-box

Testing [38℄

The Mi
rosoft Resear
h have developed a devi
e for helping bla
k-box testing.

It makes a tree from the spe
i�
ation by model
he
king and makes Model-Based

Tests by dis
overing the paths in this tree. This devi
e is the Spe
 Explorer.

29

An other devi
e developed by them, the Pex, is helping White-Box Testing

by making parametrized unit tests from program-trees and spe
i�es the inputs

itself. It
olle
ts informations during the exe
ution to make better random

inputs and to groups the paths that have the same out
ome. The exe
ution

stops when all inputs are tried or all groups are de�ned. In this way, Pex
an

provide good path
overage.

Both devi
e
an be integrated into Visual Studio thus they are very e�e
-

tively usable. Combined usage
omputes the minimal number of parametrized

unit tests whi
h provides high
overage.

The Spe
 Explorer is able to leave variables symboli
 during the dis
over of

the spe
i�
ation. This pro
ess is building up a mathemati
al stru
ture about the

interdependen
e of the variants. The result is a program-tree whi
h dis
overed

by Pex, that provides not only inputs, but relevant values for the symboli

variants. In this way we
an provides better
overage and redu
e the number of

ne
essary unit tests.

Pex is monitoring the data and
ontrol �ow by instrumenting the sour
e

ode and gives reports about bugs and
overage.

We
an build up the model (tree, data �ow,
ontrol �ow) manually with Spe

Explorer by the provided notation and style. Next, running the Spe
 Explorer

on this model is providing the parametrized unit tests in C# and also
ompile

these. Then Pex is using a symboli
 exe
ution on these tests to
ompute the

inputs and the values for the symboli
 variables.

input type spe
i�
ation, implementation

output/result program-tree, test s
enario, test inputs

programming language C, C++, C#, .NET

implemented/tool support Spe
Explorer, Pex

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure model (path, bran
h, et
.)

instrumentation te
hnique instru
tion level,
ode instrumentation

requires sour
e
ode yes

BB testing method(s) model-based

Makes prioritization/sele
tion yes

Prioritization/sele
tion based on paths in the program tree

Generating Test Cases from UML A
tivity Diagram based on Gray-

Box Method [41℄

The authors proposed an approa
h to generate test sequen
es dire
tly from

the UML a
tivity diagram using a gray-box method, where the design is reused

to avoid the
ost of test model
reation. The paper shows that test s
enarios
an

dire
tly derive from the a
tivity diagram that modeling an operation. Therefore,

all the information, su
h as test sequen
es or test data, is extra
ted from ea
h

test s
enario. Gray-box testing method, in the designers' viewpoint, generates

test sequen
es based on high level design models whi
h represent the expe
ted

stru
ture and behavior of the software under test. Those spe
i�
ations preserved

the essential information from the requirement, and are the basis of the
ode

implementation. The design spe
i�
ations are the intermediate artifa
t between

30

requirement spe
i�
ation and �nal
ode. Gray-box method extends the logi
al

overage
riteria of white box method and �nds all the possible paths from the

design model whi
h des
ribes the expe
ted behavior of an operation. Then it

generates test sequen
es whi
h
an satisfy the path
onditions by bla
k box

method and provide high path, stru
ture, method and model
overage.

input type UML A
tivity Diagram

output/result test s
enario

programming language spe
ial UML

implemented/tool support implemented, but no tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure behavior, method, model, path, stru
-

tural

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) model-based

Makes prioritization/sele
tion no

DART: dire
ted automated random testing [27℄

The authors of this paper want to eliminate the handwritten test drivers and

test harnesses and give an automatism to generate these thus make the test

environment. To rea
h this goal they developed an approa
h, DART, whi
h

ontains the three te
hniques below:

• retrieve the interfa
e and the harness of the program automati
ally by

stati

ode analysis,

• automati
 test driver generation for this interfa
e, whi
h simulates the

most
ommon harness of the program by random testing,

• dynami
 behavior analysis during tests to generate the next inputs thus

we
an systemati
ally
ontrol the exe
ution between the alternative paths.

In testing, DART
an reveal the regular errors like program
rush, assertion

violation, in�nitive running. DART makes an instrumentation on the
ode in

the level of RAM ma
hine,
olle
ts data during running and
al
ulates values

in the exe
uted bran
h. By these informations DART de�nes the inputs for

the next exe
ution thus an other bran
h will be
overed. The �rst inputs are

random values. Repeating the exe
ution we
an
over all the bran
hes in the

program tree (bran
h/path
overage). DART
an run symboli
 and real exe
u-

tions parallel.

31

input type sour
e
ode

output/result interfa
e graph, test driver, test inputs

programming language C, C++, Java

implemented/tool support it is implemented, but not have a tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure path, bran
h

instrumentation te
hnique in RAM-ma
hine level

requires sour
e
ode yes

BB testing method(s) model or graph based

Makes prioritization/sele
tion no

Robust test generation and
overage for hybrid systems [35℄

This paper presents how to develop a framework for generating tests from

hybrid systems' models. The
ore idea of the framework is to develop a notion

of robust test, where one nominal test
an be guaranteed to yield the same

qualitative behavior with any other test that is
lose to it.

Our approa
h o�ers three distin
t advantages:

1. It allows for
omputing and formally quantifying the robustness of some

properties;

2. It establishes a method to quantify the test
overage for every test
ase;

3. The pro
edure is parallelizable and therefore, very s
alable.

The ultimate goal of testing is to
over the entirety of the set of testing

parameters so in the end provide high path and model
overage.

When the set of testing parameters is an in�nite set, it is obvious that we

annot exhaustively test ea
h of the testing parameters. However, it is possible

that one testing parameter is representative of many others. A testing parameter

is said to be robust if a slight (quanti�able) perturbation of the parameter is

guaranteed to result in a test with the same qualitative properties. Robustness

an lead to a signi�
ant redu
tion in the set of testing parameters.

They use a spe
i�
 bi-simulation, where are no inputs, but properties. This

bi-simulation is symmetri
 and somehow same to pairwise testing.

32

input type model

output/result set of robust tests + inputs

programming language none

implemented/tool support implemented, but not have a tool

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure no

omputes some
overagemeasure model, path

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) model-based, random seed for inputs

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on robustness

Spe
i�
ation Coverage Aided Test Sele
tion [50℄

This paper
onsiders test sele
tion strategies in formal
onforman
e testing.

Io
o [56℄ is used as the testing
onforman
e relation, and extended to in
lude

test sele
tion heuristi
 based on a spe
i�
ation
overage metri
. The proposed

method
ombines a greedy test sele
tion with randomization to guarantee
om-

pleteness. Bounded model
he
king is employed for lookahead in greedy test

sele
tion.

It is parti
ularly useful in testing implementations of
ommuni
ation proto-

ols like as tele- and data
ommuni
ation �elds. Formal
onforman
e testing

formalizes the
on
epts of
onforman
e testing.

Essential notions, like io
o, in
lude the implementation, the spe
i�
ation and

onforman
e relation between these two. Io
o is de�ed by restri
ting in
lusion

of out-sets to suspension tra
es of the spe
i�
ation. It uses labeled transition

system to introdu
e
onforman
e relation.

Using
overage that measures the exe
ution of all the lines of a sour
e
ode

at least on
e is a good
hoi
e to enhan
e test sele
tion. Unfortunately, in bla
k

box testing this is not possible, be
ause we do not know the internals of the

a
tual implementation. From a pragmati
 point of view, if the implementation

is made a

ording to the spe
i�
ation (or vi
e versa) it is somewhat likely that

they resemble ea
h other. Therefore this paper takes the assumption that in

many
ases arising in pra
ti
al test settings, spe
i�
ation based
overage
an

"approximate"
overage used in white box testing.

This paper des
ribes the used labeled transition system's notation, the io
o

onforman
e relation, on-the-�y testing, petri nets, and in the end, it des
ribes

the developed test sele
tion methodology and algorithm.

They extended an on-the-�y algorithm from an other work [18℄.

The �rst extension is to keep tra
k of the used
overage metri
.

The se
ond
hange is to use the Heuristi
TestMove algorithm as the TestMove

subroutine. It will
all a greedy
overage based test sele
tion subroutine. If the

greedy test sele
tion subroutine
ould not provide anything, it
alls the already

presented random test sele
tion subroutine.

33

input type test set

output/result sele
ted test's set

programming language none

implemented/tool support implemented

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure spe
i�
ation
overage

omputes some
overagemeasure no

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) random with greedy sele
tion

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on spe
i�
ation
overage

4.4 Tools

In this se
tion, the overview of existing solutions in the �eld of automated

software and hardware testing is given. The most information and theoreti
al

knowledges are still o�ered by a
hievements in domain of a
ademi
 resear
h,

with huge number of published s
ienti�
 papers and tools developed through

the realization of international proje
ts. Beside, this se
tion analyses industrial

solutions for automated testing that are more fun
tional and less
ompli
ated

for both installation and usage unlike the a
ademi
 solutions (this is justi�ed

by the fa
t that their
ontinuous development and improvement are provided

by the
ompany). Finally, signi�
ant sour
e of information is the database of

patents, due to the tenden
y of many
ompanies to prote
t their intelle
tual

Property.

Majority of these tools are intended for testing both software and hardware.

When the hardware of embedded systems is tested,
ustom interfa
es (in terms

of software) are used for that purpose. These interfa
es intera
t with the system

by
ontrolling and observing it through general interfa
es (ports) that the system

already has (in the
ase of bla
k-box), or by making spe
ial support for testing.

Support added for testing purposes
an be
onsisted of both hardware (e.g.

adding debug interfa
e) and software (adding support for
ommuni
ation with

testing interfa
e through dedi
ated debug interfa
e or through existing interfa
e

like COM port, Ethernet, di�erent serial interfa
es, et
.).

Based on the relationship of the pro
ess of generating and exe
uting tests,

the existing approa
hes in the �eld of automated testing
an be divided into the

following groups of solutions:

• Automated test generation (for o�-line exe
ution),

• Automated test generation integrated with test exe
ution (on-line testing),

• Automated test exe
ution (o�-line testing).

Some solutions additionally o�ers support for o�-line test analysis.

The Overview of Existing Approa
hes and Tools for Automated

Model-Based Test Generation

34

MaTeLo Tool for making the model of system, model
he
k, generation

of test s
enarios based on the given model and the analysis of test exe
ution

results [22℄.

The starting point of the modeling is the spe
i�
ation that des
ribes the usage of

the system with
ertain level of abstra
tion. The model of the system is
onsisted

of the states and transitions among them with assigned probabilities (the model

des
ribes expe
ted usage of the system and is based on Markov
hains). One of

the biggest
hallenge during the modeling is giving pre
ise probability distribu-

tions. Tests are generated by making pat
h through the model a

ording to one

of following
riteria for test steps sele
tion: Chinese postman algorithm (tests

are generated to
over all transitions, disregarding the probability distribution)

and sele
tion on the prin
iple of probability (leaving a state, the transition with

the highest probability is ele
ted). Though supported test formats are TTCN-3

and XML, the tool generates tests in several spe
ial-purpose formats adapted

to
ustomers (National Instruments TestStand, MBte
h PROVEte
h, IBM Ra-

tional Fun
tional Tester, HP Qui
kTest Professional, SeleniumHQ). Test results

analysis gives information like model
overage, reliability of software/hardware,

mean time to failure, and failure probability. The tool is intended for fun
tional

testing, testing of integration and a

eptan
e in the �eld of embedded systems.

During the usage of the tool, following de�
ien
ies are observed:

• The size of the test set that
an be generated in one pass is limited to 400,

• There is no support for the
al
ulation of the number of the tests required

to a
hieve desired reliability of the system.

The tool is developed through the international proje
t of the Fifth Frame-

work Programme (FP5). Nowadays, it is own by the All4te

ompany and is

available on the market as a
ommer
ial solution requiring an appropriate li-

ense.

input type some kind of model

output/result test
ases, s
enarios

programming language TTCN-3, XML, user de�ned

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure spe
i�
ation, ar
 and state

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) Markov-model-based

Makes prioritization/sele
tion
an make sele
tion

mbt Open sour
e tool for automated generation of test s
enarios a

ording

to the model [37℄. It doesn't support graphi
al presentation of the model, thus

the model given in .graphml format is required to be passed as input parameter

(it doesn't use UML format, avoiding unne
essary
omplexity). For making the

model, yEd tool
ould be used. The model is
onsisted of the states and tran-

sitions among them with assigned probabilities. As the
riteria of test sele
tion

35

A* algorithm and random sele
tion,
overage of states and transitions and oth-

ers are used. Beside generating tests for later (indire
t) exe
ution, generating

integrated with exe
ution (on-line testing) is also supported.

input type model in GraphML

output/result test
ases, s
enarios

programming language Java

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) model-based

Makes prioritization/sele
tion sele
tion

TorX The tool for automated generation of test s
enarios for testing the

omplian
e of the system with a
ertain standard, intended for the
lass sys-

tems whose operating mode involves intera
tion with the environment (rea
tive

systems), e.g. embedded systems,
ommuni
ation proto
ols, et
. [55℄. Tests are

derived from system behavioral model and some environmental aspe
ts
ould be

partially des
ribed also (system's environment model). For generation of tests

s
enarios the io
o algorithm is used, whi
h aims the de�nition of �nite test set

whi
h will dis
over as mu
h errors as possible during testing with limited dura-

tion. Test s
enarios are sele
ted on several ways: randomly, by usage of ad ho

test spe
i�
ation, based on some heuristi
s, or by the
riteria of model
overage.

In earlier versions, the tool supported integrated test generation and exe
ution

only (on-line testing), i.e. test s
enarios were generated as needed during the

exe
ution. The regime where previously prepared test set is used in exe
ution

(o�-line testing) is enabled later. Basi

hara
teristi
s of the tool are �exibility

and openness. The �exibility provides simple substitution of any
omponent of

the tool with the improved one, while the openness relates to the possibility of

adding new independent (third-party)
omponents. The tool supports repeated

exe
ution of test sets derived from di�erent spe
i�
ations, with di�erent
on-

�gurations, and the like (test
ampaign). Additionally, ar
hiving results on a

systemati
 way is supported. The tool is used in several studies. Lu
ent R&D

Center Twente is su

essfully used by TorX for testing of network proto
ols [55℄.

The tool is also used for testing the system for
onferen
e proto
ol [19℄ and for

testing the highway tolling system [17℄. However, some de�
ien
ies of the tool

are observed during the usage [55℄:

• Insu�
ient support for testing the real-time appli
ations, and

• Bad performan
e of generating test s
enarios.

Other de�
ien
ies of the tool that are observed:

• No possibility for model analysis (e.g. model
overage) and the analysis

of test results,

36

• No possibility for assigning the probability of transitions between states,

• Big
omplexity of installation and
on�guration of the tool, and

• Though the tool supports separated generation and exe
ution of tests (o�-

line testing), the do
umentation about that is not available.

Though the tool is available for a
ademi
 resear
hes [26℄, the
omplexity of

the pro
ess of installation and
on�guration limits its pra
ti
al appli
ation to a

large extent. Moreover, studies in whi
h the tool was used were performed or

assisted by the author of the tool. The aforementioned reasons have
ontributed

to the development JTorX tools.

input type behavioral and environment model

output/result test
ases, s
enarios

programming language any

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) io
o algorithm

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on randomly, ad ho
 test spe
i�
ation,

heuristi
s,
riteria of model
overage

JUMBL The tool for statisti
al model-based testing [49℄. It is developed

in Java programming language, in order to be platform independent. TML

language (notation for des
ription of Markov
hains) is used for the model de-

s
ription. The model is
onsisted of the states and the transitions among states

related to pairs of input events and
orresponding probabilities. The tool doesn't

support graphi
al model des
ription, but the model parameters are given in text

format, through the
ommand line. The tool supports model analysis in terms of

model size, expe
ted length of the test s
enario, expe
ted duration of retention

in the ea
h state of the model during testing, expe
ted number of o

urren
es

for ea
h state and transition in the test s
enario, et
. JUMBL enables the anal-

ysis of test results and the measure of tested system reliability. Cal
ulation of

system reliability is based on the previously proposed model [44℄. In �rst step,

the best reliability is
al
ulated, i.e. the reliability that will be a
hieved if all

tests pass on
e they are exe
uted. This step doesn't require exe
ution of tests

and serves to
al
ulate the size of test set needed for a
hieving desired reliability

level. In the next step, real reliability is
al
ulated as the ratio of su

essfully

and unsu

essfully exe
uted tests. The de�
ien
y of the tool is la
k of support

for graphi
al notation of the model and, more important, though the tool was

originally available for a
ademi
 usage,
urrently it is not.

37

input type model in TML language

output/result test
ases, s
enarios

programming language Java

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) Markov-model-based

Makes prioritization/sele
tion sele
tion

TGV The tool for generation of the tests intended for veri�
ation of
om-

plian
e of the system with the standard in the area of the proto
ol [57℄. The

model of the system under test is based on the prin
ipal of labeled transitions

(labeled transition systems). Io
o algorithm is used for the generation of test

s
enarios, with the
riteria for test sele
tion de�ned by test spe
i�
ation. The

tool supports the assignment of time
ontrols at the time of test exe
ution [23℄.

E.g. time
ontrol is started in the moment then input event is expe
ted. If

the input event happens, time
ontrol is stopped. Otherwise, the test exe
ution

is
onsidered as unsu

essful. The tool is used in the studies of proto
ol test-

ing [34℄.

input type labeled transitions model

output/result test
ases, s
enarios

programming language TTCN

implemented/tool support tool for proto
ol testing

applied in real environment no

spe
i�
 to embedded systems no

use some
overage measure bran
h

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) io
o algorithm

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on spe
i�
ation

AETG The generator of inputs for
ombined model-based testing [11℄.

In
ombined testing approa
h, test s
enarios are de�ned so that all the
om-

binations of test parameters are
overed (user inputs, internal and external

parameters, et
.). Number of these test s
enarios
ould be huge in pra
ti
e.

The tool provides optimal sele
tion of double, triple and quadruple inputs, i.e.

it de�nes inputs, but it doesn't support providing of expe
ted outputs whi
h

are ne
essary in the
ase of automated testing. Though the tool models system

environment, there is no support for des
ribing the behavior of system under

test. AETG is
ommer
ial tool intended for testing di�erent
on�gurations of

devi
e or any other produ
t where parameters sele
tion is important. It is used

in several studies for testing
omplian
e with the proto
ol spe
i�
ation.

38

input type some model

output/result test
ases, s
enarios

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure n-*way
overage

instrumentation te
hnique no

requires sour
e
ode (yes/no) no

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on all parameters
overed

LTG Commer
ially available tool for the generation of tests intended for

the testing of the systems that rea
ts to the stimuli from the environment, em-

bedded systems and appli
ations for ele
troni
 transa
tions [6℄. The generation

of tests is based on the system usage model, where the
overage of the model is

used as the
riteria for test sele
tion. The tool is used for testing of the smart

ard appli
ations [8℄.

input type system usage model

output/result

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems yes

use some
overage measure yes

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on
overage

Conformiq Tool Suite The Conformiq
ompany provides the Conformiq

Tool Suite for modeling the system and for automated generation of model-

based test s
enarios [12℄. It is possible to des
ribe the model graphi
ally (UML

notation) or textually (QML - Qtroni
 Modelling Language, based on Java and

C# languages) [32℄. Beside the generation of test set for later exe
ution (o�-

line testing), the test generation integrated with test exe
ution is also supported

(on-line testing). It is possible to use the tool from E
lipse environment or as the

standalone tool. It is available for both Windows and Linux operating systems.

It supports several test �le formats: TCL, TTCN-3 Visual Basi
, HTML, and

XML. The tool is available with
ommer
ial li
ense.

39

input type UML or QML model

output/result test
ases, s
enarios

programming language Python, TCL, TTCN-3, C, C++, Vi-

sual Basi
, Java, Junit, Perl, Ex
el,

HTML, Word, Shell S
ripts

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on state
overage, transition
overage, 2-

transition
overage, Boundary Value

Analysis, Bran
h Coverage, Atomi

Condition Coverage, Method Coverage,

Statement Coverage, Parallel Transi-

tion Coverage

Spe
 Explorer Mi
rosoft introdu
ed the Spe
 Explorer tool designed to

test the software on the prin
iple of modeling [43℄. Behavioral model is generated

by the software based on the sour
e
ode and de�ned by C# programming

language. The model is also represented as the graph for easier readability

for the user. After verifying the
orre
tness of the model, test s
enarios are

generated. Spe
 Explorer is an extension of Mi
rosoft Visual Studio tool set,

and is supplied as an integral part sin
e the version 2010 of Visual Studio.

Mi
rosoft has patented a method and system for software testing and mod-

eling of user behavior [2℄. Aspe
ts of using the software under test are des
ribed

by the model, whi
h is then used to generate tests. The method uses several

algorithms for test exe
ution, depending on the goal of testing: Chinese post-

man algorithm, the sele
tion of test steps in a random manner or
ontrary to

the prin
iple of random sele
tion, i.e. the next test step is one that has not

previously been sele
ted.

input type spe
i�
ation or model

output/result test s
enarios or a graph

programming language C#, .NET

implemented/tool support Visual Studio 2010 Ultimate and above,

Spe
Explorer

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure behavioral, bran
h

omputes some
overagemeasure
ode

instrumentation te
hnique .NET assembly level, binary inst.

requires sour
e
ode yes

BB testing method(s) Markov-model-based

Makes prioritization/sele
tion
an make both

Prioritization/sele
tion based on some user-de�ned aspe
t

40

The Overview of Existing Approa
hes and Tools for Automated

Model-Based Test Generation Integrated with Test Exe
ution

JTorX The su

essor of TorX tool, developed to remove some of the draw-

ba
ks of the previous version [5℄. TorX is developed to support the �exibility

and openness, while some important features su
h as ease of installation, multi

platform support, ease of use, and others are ignored. JTorX is developed using

Java programming language, thus fa
ilitating the installation. Also, added a

graphi
al user interfa
e, whi
h enables easy
on�guration of the tool. Besides

improved io
o algorithm for test generation [54℄, JtorX supports uio
o algo-

rithm. One feature that
hara
terizes this parti
ular tool and distinguishes it

from similar tools is the advantage for use in tea
hing. JTorX is available for

a
ademi
 purposes [25℄.

input type behavioral and environment model

output/result test
ases, s
enarios

programming language Java

implemented/tool support tool

applied in real environment yes

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) improved io
o algorithm, uio
o algo-

rithm

Makes prioritization/sele
tion sele
tion

Prioritization/sele
tion based on randomly, ad ho
 test spe
i�
ation,

heuristi
s,
riteria of model
overage

AGEDIS The tool for automated model-based testing of distributed sys-

tems. It
onsolidates the environment for model des
ription (UML model de-

s
ription), the model-
he
k, test generation, model
overage analysis, test exe-

ution, the analysis of dete
ted failures, and the generation of testing reports,

[33, 30℄. The tests are generated by the kernel of TGV tool, while the analysis

of model
overage is realized with FoCuS tool [4℄. Test exe
ution is supported in

distributed work regime. The tool was at �rst available for a
ademi
 purposes,

however, it is not maintained and
urrently not available.

41

input type UML model

output/result test
ases, s
enarios, reports

programming language Abstra
t Test Suite (ATS)

implemented/tool support tool

applied in real environment no

spe
i�
 to embedded systems no

use some
overage measure no

omputes some
overagemeasure yes

instrumentation te
hnique no

requires sour
e
ode no

BB testing method(s) based on
overage of inputs to the

model

Makes prioritization/sele
tion no

The Overview of Existing Approa
hes and Tools for Automated Test

Exe
ution Sony has patented a system for automati
 testing of TV sets,

whi
h is a unit testing approa
h using a bla
k box [59℄. The tests
onsist of a

series of sequen
es that are sent in the �rst step to the TV. After pro
essing,

output signals from the TV are re
orded and
ompared with expe
ted a

ording

to the relevant prin
iples. The system
onsists of: (i) the unit to re
ord the TV

output, (ii) devi
es for the TV remote
ontrol, (iii) a PC that performs the

appropriate appli
ation for testing and is asso
iated with a database to store

the tests, and (iv) test results. Another solution patented by Sony in the �eld

of system testing is the system for automated testing of
onsumer ele
troni
s

devi
es (audio / video devi
es, TV sets), with a fo
us on devi
e performan
e

testing [24℄. Unlike previous solutions,
ommuni
ation with the tested applian
e

is a

omplished via the
ommand
odes that are transmitted wireless. Similar

to the previous design, the system is designed to test the video quality on the

TV. Unlike the previous one, this solution veri�es the memory
onsumption of

the test devi
e.

Philips has patented a system and method for automated testing of the TV

sets [51℄. The system
onsists of a unit that sends digital video signals to the

TV as inputs and, after pro
essing the test signal, re
eives output video signals

from the TV. Pro
essing unit performs
omparison of the referen
e and the

output (test) signal and, based on appropriate algorithms, evaluates the quality

of video signal from the TV. Jitter, SNR (signal-to-noise ratio) measure, and

blo
ks' similarity per
entage are used as the
riteria for
omparison of test and

referen
e signals.

The
ompany Hon Hai Pre
ision Industry has patented a system for au-

tomated performan
e measurement for set-top box devi
es [42℄. The system

onsists of the audio and video test signals sour
e, the testing pro
ess
ontroller

(PC), and the en
oder and analyzer of audio and video signals. Based on the

ontent of the test s
enario, the
ontroller of the testing pro
ess triggers sour
es

of audio and video signals, to generate test signals for the system under test.

The signal is then
onverted to the
orresponding data stream format and trans-

ferred to the system under test. By passing of a given data stream through the

system, output test signal is re
eived. Based on the test s
enario, the
ontroller

of the testing pro
ess sets the parameters of audio and video signals' analyzer.

Test signal is analyzed a

ording to these parameters. The system is appli
able

42

for audio and video signal analysis and performan
e measurement for set-top-

box devi
es.

5 Evaluation and
omparison

In this se
tion, a detailed assessment of relevant tools is shown. We separately

evaluate bla
k-box, white-box, and gray-box te
hniques and tools.

5.1 Bla
k Box Testing

Sele
tion G#/ Prioritization H#

Requires Sour
e Code

Instrumentation: sour
e G#/ binary H#

Spe
i�
 to Embedded Systems

Applied in Real Environment

Implemented Tool Support

Programming Language

Output / Result

Input

P.

[13℄ Matlab,

Simulink,

State�ow model

Classi�
ation

tree

PROGRES # # #

[20℄ Some kind of

model

Test
ases,

s
enarios

� # # # #

[29℄ Some kind of

model

Test
ases,

s
enarios

TTCN-3 # # G#

[15℄ Requirements

spe
i�
ation

Test suite C # # G#

[45℄ UML use
ases Test suite C++ # # # #

[39℄ State diagram Test
ases � # # # # G#

[52℄ State
hart Test
ases C++ # # # # #

[9℄ Spe
i�
ation or

model

Test s
enarios

or a graph

C#, .NET # H#

[53℄ Any kind of

unit tests or

implementation

Parameterized

unit tests

Java, .NET # # # #

[47℄ Model or sour
e

ode

Test suite and

inputs

Java, .NET # # #

[28℄ Control �ow Test suite C, Prolog # # # # #

[10℄ Input domain Test inputs C++ # # # # # #

Table 1: Assessment of bla
k-box testing methods.

In Table 1 we present an overview of the overall
lassi�
ation and evaluation

riteria. The �rst
olumn presents the
itation index of the method, and the

next
olumns are as follows:

Input Input type, whi
h is usually some kind of model, sour
e
ode or spe
i�-

ation given in a suitable form (
hart or diagram).

Output / Result A brief output/result des
ription.

Programming Language The used programming language for ea
h method.

Implemented Tool Support Whether the supporting tool is implemented.

43

Applied in Real Environment Whether the method is applied in real envi-

ronment.

Spe
i�
 to Embedded Systems Is the method used for embedded systems

testing.

Instrumentation The used instrumentation te
hnique, sour
e
ode or binary

instrumentation.

Requires Sour
e Code Is the sour
e
ode required?

Sele
tion / Prioritization Is test
ase sele
tion or prioritization possible?

The most promising method in BBT is the MaTeLo testing suite for au-

tomati
 software validation, although it is not
ommon in embedded system

usage.

5.2 White Box Testing

The evaluation
riteria for white box methods are the following:

Input type Gives the input of the evaluated method.

Output / result Gives output and / or result of the evaluated method.

Programming language Denotes whether the evaluated method is spe
i�

for some programming languages, or it
an be applied to any programming

language.

Implemented / tool support Indi
ates whether the method is implemented

fully or partially, or there are tools that support this method.

Applied in real environment Indi
ates whether the method is purely theo-

reti
al, or it has been applied and its appli
ability has been proven in real

s
enarios.

Spe
i�
 to embedded systems Indi
ates whether the evaluated method is

spe
i�
 to embedded systems environment, or it is general and
an be

e�e
tively used not only in embedded systems.

Use some
overage measure Indi
ates whether the method uses some kind

of
overage values (e.g.
ode or fun
tional
overage) as input.

Computes some
overage measure Indi
ates whether the method
omputes

some kind of
overage values (e.g.
ode or fun
tional
overage) as output.

Instrumentation te
hnique If instrumentation is used in the method, this

point gives the instrumentation te
hnique (e.g. sour
e
ode, binary, et
.)

Requires sour
e
ode Indi
ates if the method requires the sour
e
ode of the

system under test, or works from some other test basis.

BB testing method(s) This point indi
ates the general bla
k-box testing meth-

ods that are spe
ialized in the evaluated solution.

44

Makes sele
tion / prioritization Indi
ates usage of test
ase sele
tion/ pri-

oritization te
hniques and shows exa
tly what kind of te
hnique is used.

Prioritization / sele
tion based on Shows the base measure or data of the

used test
ase prioritization/sele
tion te
hniques (e.g. extent of
ode
ov-

ered, time required for exe
ution, et
.).

Sele
tion G#/ Prioritization H#

BB testing method

Requires Sour
e Code

Instrumentation: sour
e G#/ binary H#

Spe
i�
 to Embedded Systems

Applied in Real Environment

Implemented Tool Support

Programming Language

Output / Result

Input

P.

[14℄ sour
e
ode per
entage

of observed

statements

C,

C++

G# �

[46℄ sour
e

ode,

implemen-

tation,

interfa
e

sets of

loses

� # # # use
ases,

boundary

values,

abstra
t

implemen-

tation

#

[40℄ formal

model

boundary

overage

B, Z,

VDM,

UML/

OCL

 G# # # � G#

[31℄ Embedded

System

instru-

mented

system

C H# # � #

Table 2: Assessment of white-box testing methods.

Also, in Table 2
on
erning WBT te
hniques, for ea
h one, the input type,

outputs/results, programming language, implemented tool support, is the method

supplied in real environment, or spe
i�
 to embedded systems,
an it implement

the instrumentation te
hnique, does it require the sour
e
ode, is it possible to

ombine with the BBT testing te
hnique, or
an the sele
tion/prioritization be

implemented during testing.

We
an
on
lude that the �Boundary
overage
riteria for test generation

from formal models� is the most promising method, but it does not perform

instrumentation, nor does it require sour
e
ode. It also
an perform sele
tion

and prioritization, but is not used in BBT.

5.3 Gray Box Testing

In this se
tion white-box aided bla
k-box testing methods (spe
ially,
overage

aided random testing, test
ase prioritization and sele
tion) are assessed.

In Table 3, we give a brie�ng of the methods for gray-box testing. For ea
h

method, a brief evaluation
on
erning main spe
i�
ations is presented. It seems

that the �rst method whi
h a
hieves both model and
ode
overage has the best

options.

45

Sele
tion G#/ Prioritization H#

BB testing method

Requires Sour
e Code

Instrumentation: sour
e G#/ binary H#

Spe
i�
 to Embedded Systems

Applied in Real Environment

Implemented Tool Support

Programming Language

Output / Result

Input

P.

[38℄ Spe
i�
-

ation,

implemen-

tation

Program

tree, test

s
enarios,

test inputs

C,

C++,

C#,

.NET

 # G# Model-

based

[41℄ UML

a
tivity

diagram

Test

s
enarios

UML # # # # Model-

based

#

[27℄ Sour
e

ode

Interfa
e

graph, test

drivers,

test inputs

C,

C++,

Java

H# Model or

graph-

based

#

[35℄ Model Test
ases,

test inputs

� # # # Model-

based,

random

G#

[50℄ Test set Sele
ted

test set

� # # # Random G#

Table 3: Assessment of gray-box testing methods.

5.4 Tools

Table 4 gives a brie�ng of approa
hes and tools for automated model-based

test generation with similar properties overview like in previous tables, but also

with information of
overage usage and its
omputation, sele
tion/prioritization

possibilities and the methods they are based on. Whi
h one of these tools are

mostly e�
ient, of
ourse depends on the needs of the user. For example, LTG is

both used in embedded systems and has many other advantages. Another good

example is the Spe
-explorer tool, but it is not for embedded systems usage.

Table 5 shows only two existing tools for automated model-based test gen-

eration integrated with test exe
ution. The same properties are presented for

ea
h one.

6 Con
lusions

During the assembly of this survey, we made the following observations.

There are many bla
k-box and white-box testing te
hniques exist that are

not spe
i�
 to but
an potentially be used in embedded systems enviromnents.

Although the
ombination of bla
k-box and white-box testing methods is men-

tioned many times as a method that
an result in better testing, in these papers

di�erent te
hniques are rarely
ombined. Mostly fragments and partial solu-

tions, but not
omplex pro
esses are presented. For example, even if test exe-

ution produ
es some additional data, there is no feedba
k into some previous

step of the pro
ess. Overall, although there are many possibilities to be used in

embedded systems testing, these are not utilized (or at least not reported).

46

Sele
tion (G#) / prioritization (H#)

BB testing method

Requires sour
e
ode

Instrumentation: sour
e (G#) / binary (H#)

Uses (G#) /
omputes (H#)
overage

Spe
i�
 to Embedded Systems

Applied in Real Environment

Programming Language

Output / Result

Input

Tool

MaTeLo Model Test

ases,

s
enarios

TTCN-3,

XML,

ustom

 # H# # # Markov

model

G#

mbt GraphML Test

ases,

s
enarios

Java # H# # # Model-

based

G#

TorX Behav-

ioural

and

environ-

mental

model

Test

ases,

s
enarios

Any # H# # # Io
o

alg.

G#

JUMBL TML

Model

Test

ases,

s
enarios

Java # H# # # Markov

model

G#

TGV Labelled

Transi-

tion

Model

Test

ases,

s
enarios

TTCN # # # # Io
o

alg.

G#

AETG Model Test

ases,

s
enarios

� # H# # # � G#

LTG System

usage

model

� � # # � G#

Conformiq UML or

QML

model

Test

ases,

s
enarios

Python,

TCL,

TTCN-3,

C, C++,

Visual

Basi
,

Java,

Junit,

Perl,

Shell

S
ripts

 # H# # # � G#

Spe

Explorer

Spe
i�
-

ation or

model

Test

s
enarios

C#,

.NET

 # Markov

model

Table 4: Overview of Existing Approa
hes and Tools for Automated Model-

Based Test Generation.

In addition, despite of there are some promising tools, whi
h
ould be ef-

fe
tively used to ease testing and/or improve its quality, neither of them are

spe
ialized for embedded systems. And there are only a very few papers report

on the appli
ation of these testing te
hniques in embedded systems, and most

of these papers report on results, and not on te
hni
al details.

47

Sele
tion (G#) / prioritization (H#)

BB testing method

Requires sour
e
ode

Instrumentation: sour
e (G#) / binary (H#)

Uses (G#) /
omputes (H#)
overage

Spe
i�
 to Embedded Systems

Applied in Real Environment

Programming Language

Output / Result

Input

Tool

JTorX Behav-

ioural

and

environ-

mental

model

Test

ases,

s
enarios

Java # H# # # Improved

io
o alg.,

uio
o alg.

G#

AGEDIS UML

Model

Test

ases,

s
enarios

ATS # # H# # # Based on

overage

of inputs

to the

model

#

Table 5: Overview of Existing Approa
hes and Tools for Automated Model-

Based Test Generation.

Thus, it seems to be that a good general framework for embedded systems

testing is still missing from the market.

A
knowledgement

This work were done in the Cross-border ICT Resear
h Network (CIRENE)

proje
t (proje
t number is HUSRB1002/214/044) supported by the Hungary-

Serbia IPA Cross-border Co-operation Programme,
o-�nan
ed by the

European Union.

Referen
es

[1℄ Debugging, August 2012.

[2℄ D. A
hlioptas, C. Borgs, J. Chayes, Robinson H., J. Tierney, and Mi
rosoft

Corporation. Methods and systems of testing software, and methods and

systems of modeling user behavior, 2009.

[3℄ Lu
a De Alfaro and Thomas A. Henzinger. Interfa
e automata. In Pro-

eedings of the Ninth Annual Symposium on Foundations of Software En-

gineering, pages 109�120. ACM Press, 2001.

[4℄ alphaWorks. Fo
us homepage, http://www.alphaworks.ibm.
om/te
h/fo
us.

[5℄ A. Belihfante. Jtorx: A tool for on-line model-driven test derivation and

exe
ution. Tools and Algorithms for the Constru
tion and Analysis of Sys-

tems, Le
ture Notes in Computer S
ien
e, 6015:266�270, 2010.

48

[6℄ E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F. Peureux, M. Ut-

ting, and E. Torreborre. Model-based testing from uml models. Le
ture

Notes in Informati
s, pages 223�230, 2006.

[7℄ Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Suku-

maran. A model-based regression test sele
tion approa
h for embedded

appli
ations. SIGSOFT Softw. Eng. Notes, 34(4):1�9, July 2009.

[8℄ F. Bouquet, B. Legeard, F. Peureux, and E. Torreborre. Mastering test

generation from smart
ard software formal models. In Pro
eedings of the

International Workshop on Constru
tion and Analysis of Safe Se
ure and

Interoperable Smart devi
es, pages 70�85. Springer-LNCS, 2004.

[9℄ Colin Campbell, Wolfgang Grieskamp, Lev Na
hmanson, Wolfram S
hulte,

Nikolai Tillmann, and Margus Veanes. Testing
on
urrent obje
t-oriented

systems with spe
 explorer. In Formal Methods, volume 3582 of Le
ture

Notes in Computer S
ien
e, pages 542�547. Springer, 2005.

[10℄ T.Y. Chen. Adaptive random testing. In Quality Software, 2008. QSIC

'08. The Eighth International Conferen
e on, page 443, August 2008.

[11℄ D.M. Cohen, S.R. Dalal, A. Kajla, and G.C. Patton. The automati
 e�-

ient test generator (aetg) system. In Pro
eedings of the 5th International

Symposium on Software Reliability Engineering, pages 303�309, November

1994.

[12℄ Conformiq In
. Homepage, http://www.
onformiq.
om/produ
ts/, Au-

gust 2012.

[13℄ Mirko Conrad, Heiko Dörr, Ingo Stürmer, and Andy S
hürr. Graph trans-

formations for model-based testing. In Modellierung in der Praxis - Mod-

ellierung für die Praxis, Modellierung 2002, pages 39�50. GI, 2002.

[14℄ José C. Costa, Srinivas Devadas, and José C. Monteiro. Observability

analysis of embedded software for
overage-dire
ted validation. In In Pro-

eedings of the International Conferen
e on Computer Aided Design, pages

27�32, 2000.

[15℄ S.J. Cunning and J.W. Rozenblit. Automati
 test
ase generation from

requirements spe
i�
ations for real-time embedded systems. In Systems,

Man, and Cyberneti
s, 1999. IEEE SMC '99 Conferen
e Pro
eedings. 1999

IEEE International Conferen
e on, volume 5, pages 784�789, 1999.

[16℄ Alan M. Davis. A
omparison of te
hniques for the spe
i�
ation of external

system behavior. Commun. ACM, 31(9):1098�1115, September 1988.

[17℄ R. G. de Vries, A. Belinfante, and J. Feenstra. Automated testing in pra
-

ti
e: The highway tolling system. In Pro
eedings of the IFIP 14th Interna-

tional Conferen
e on Testing Communi
ating Systems XIV, pages 219�234.

Kluwer A
ademi
 Publishers, 2002.

[18℄ René G. de Vries and Jan Tretmans. On-the-�y
onforman
e testing us-

ing spin. International Journal on Software Tools for Te
hnology Transfer

(STTT), 2:382�393, 2000. 10.1007/s100090050044.

49

[19℄ L. Du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. Belinfante,

and R. de Vries. Formal test automation: The
onferen
e proto
ol with

tgv/torx. In Pro
eedings of the 13th International Conferen
e on Test-

ing Communi
ating Systems (TestCom 2000), page 221�228, August 29 -

September 1 2000.

[20℄ I. K. El-Far and J. A. Whittaker. Model-based software testing. In En
y-

lopedia of Software Engineering, pages 1�22. John Wiley & Sons, 2001.

[21℄ V. En
ontre. Testing embedded system: Do you have the guts for it?, 2004.

[22℄ A. Felia
hi and H. Le Guen. Generating transition probabilities for auto-

mati
 model-based test generation. In Pro
eedings of the Third Interna-

tional Conferen
e on Software Testing, Veri�
ation and Validation, pages

99�102, April 2010.

[23℄ J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. An experiment in auto-

mati
 generation of
onforman
e test suites for proto
ols with veri�
ation

te
hnology. S
ien
e of Computer Programming, 29:123�146, 1997.

[24℄ P. Flores, V. Mehta, H. Nguyen, M. Sharma, C. Walsh, T. Xiong, and Sony

Ele
troni
s. Automated test for
onsumer ele
troni
s, 2010.

[25℄ Formal Methods and Tools resear
h group, University of

Twente. JTorX - a tool for model-based testing, homepage,

http://fmt.
s.utwente.nl/tools/jtorx/, August 2012.

[26℄ Formal Methods and Tools resear
h group, University of Twente,

Eindhoven Te
hni
al University, Philips Resear
h Laborato-

ries, and Lu
ent Te
hnologies. TorX test tool homepage,

http://fmt.
s.utwente.nl/tools/torx, August 2012.

[27℄ Patri
e Godefroid, Nils Klarlund, and Koushik Sen. Dart: dire
ted auto-

mated random testing. In Pro
eedings of the 2005 ACM SIGPLAN
on-

feren
e on Programming language design and implementation, PLDI '05,

pages 213�223, New York, NY, USA, 2005. ACM.

[28℄ Arnaud Gotlieb and Matthieu Petit. Path-oriented random testing. In

Pro
eedings of the 1st international workshop on Random testing, RT '06,

pages 28�35, New York, NY, USA, 2006. ACM.

[29℄ A Guiotto, B A
quaroli, and A Martelli. MaTeLo: Automated Testing Suite

for Software Validation, pages 253�261. ESA, 2003.

[30℄ A. Hartman and K. Nagin. The agedis tools for model based testing.

Test generation - ACM SIGSOFT Software Engineering Notes ar
hive,

29(4):129�132, July 2004.

[31℄ Kim Hazelwood and Artur Klauser. A dynami
 binary instrumentation

engine for the arm ar
hite
ture. In Pro
eedings of the 2006 international

onferen
e on Compilers, ar
hite
ture and synthesis for embedded systems,

CASES '06, pages 261�270, New York, NY, USA, 2006. ACM.

50

[32℄ A. Huima. Implementing
onformiq qtroni
. In Testing of Software and

Communi
ating Systems (TestCom/FATES'07), volume 4581/2007, pages

1�12. Springer-LNCS, 2007.

[33℄ IBM Resear
h Laboratory in Haifa, Oxford University Computing Labora-

tory, Verimag laboratory at Universite Joseph Fourier in Grenoble, Fran
e

Tele
om R&D, IBM development Laboratory in Hursley Park (UK), In-

trasoft International, and imbus AG, Moehrendorf, Germany. Automated

generation and exe
ution of test suites for distributed
omponent-based

software, agedis homepage, http://www.agedis.de/index.shtml, August

2012.

[34℄ C. Jard and T. Je'ron. Tgv: Theory, prin
iples and algorithms. In Pro-

eedings of the Sixth World Conferen
e on Integrated Design and Pro
ess

Te
hnology, IDPT-2002, June 2002.

[35℄ A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and

George J. Pappas. Robust test generation and
overage for hybrid systems.

In Pro
eedings of the 10th international
onferen
e on Hybrid systems:
om-

putation and
ontrol, HSCC'07, pages 329�342, Berlin, Heidelberg, 2007.

Springer-Verlag.

[36℄ S. Kandl, R. Kirner, and P. Pus
hner. Automated formal veri�
ation and

testing of
 programs for embedded systems. In Obje
t and Component-

Oriented Real-Time Distributed Computing, 2007. ISORC '07. 10th IEEE

International Symposium on, pages 373 �381, may 2007.

[37℄ Kristian Karl and Johan Tejle. mbt homepage, http://mbt.tigris.org/,

August 2012.

[38℄ Ni
olas Ki
illof, Wolfgang Grieskamp, Nikolai Tillmann, and Vi
tor

Braberman. A
hieving both model and
ode
overage with automated

gray-box testing. In Pro
eedings of the 3rd international workshop on Ad-

van
es in model-based testing, A-MOST '07, pages 1�11, New York, NY,

USA, 2007. ACM.

[39℄ Ni
ha Kosindrde
ha and Jirapun Daengdej. A test generation method based

on state diagram. Journal of Theoreti
al and Applied Information Te
h-

nology, 18(2):28�44, August 2010.

[40℄ N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary
overage

riteria for test generation from formal models. In Software Reliability

Engineering, 2004. ISSRE 2004. 15th International Symposium on, pages

139�150, November 2004.

[41℄ Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuandong, and

Zheng Guoliang. Generating test
ases from uml a
tivity diagram based

on gray-box method. In Pro
eedings of the 11th Asia-Pa
i�
 Software En-

gineering Conferen
e, APSEC '04, pages 284�291, Washington, DC, USA,

2004. IEEE Computer So
iety.

[42℄ P. Liu and Hon Hai Pre
ision Industry. Automated test measurement sys-

tem and method therefor, 2008.

51

[43℄ Mi
rosoft. Spe
 Explorer homepage,

http://visualstudiogallery.msdn.mi
rosoft.
om/

271d0904-f178-4
e9-956b-d9bfa4902745/, August 2012.

[44℄ K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Ni
ol, B.W. Mur-

rill, and M. Voas. Estimating the probability of failure when testing reveals

no failures. IEEE Transa
tions on Software Engineering, 18(1):33�43, 1992.

[45℄ C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel. Automati
 test gen-

eration: a use
ase driven approa
h. Software Engineering, IEEE Transa
-

tions on, 32(3):140�155, Mar
h 2006.

[46℄ Hanne Riis Nielson and Flemming Nielson. Flow logi
: a multi-

paradigmati
 approa
h to stati
 analysis. In Torben ÆMogensen, David A.

S
hmidt, and I. Hal Sudborough, editors, The essen
e of
omputation,

pages 223�244. Springer-Verlag New York, In
., New York, NY, USA, 2002.

[47℄ C. Pa
he
o, S.K. Lahiri, M.D. Ernst, and T. Ball. Feedba
k-dire
ted ran-

dom test generation. In Software Engineering, 2007. ICSE 2007. 29th In-

ternational Conferen
e on, pages 75�84, May 2007.

[48℄ A. Penttinen, R. Jastrzebski, R. Pollanen, and O. Pyrhonen. Run-time

debugging and monitoring of fpga
ir
uits using embedded mi
ropro
essor.

In Design and Diagnosti
s of Ele
troni
 Cir
uits and systems, IEEE, pages

147�148, 2006.

[49℄ S. Prowell. Jumbl: A tool for model-based statisti
al testing. In Pro
eedings

of the 36th Annual Hawaii International Conferen
e on System S
ien
es,

page 337.3, 2003.

[50℄ T. Pyhala and K. Heljanko. Spe
i�
ation
overage aided test sele
tion.

In Appli
ation of Con
urren
y to System Design, 2003. Pro
eedings. Third

International Conferen
e on, pages 187�195, June 2003.

[51℄ A. Rau and Philips Ele
troni
s. System and method for automated testing

of digital television re
eivers, 2004.

[52℄ Valdivino Santiago, Ana Silvia Martins do Amaral, N. L. Vijaykumar,

Maria de Fatima Mattiello-Fran
is
o, Eliane Martins, and Odnei Cuesta

Lopes. A pra
ti
al approa
h for automated test
ase generation using stat-

e
harts. In Pro
eedings of the 30th Annual International Computer Software

and Appli
ations Conferen
e, volume 02 of COMPSAC '06, pages 183�188,

Washington, DC, USA, 2006. IEEE Computer So
iety.

[53℄ N. Tillmann and W. S
hulte. Unit tests reloaded: parameterized unit

testing with symboli
 exe
ution. Software, IEEE, 23(4):38�47, July-August

2006.

[54℄ J. Tretmans. Model based testing with labelled transition systems. In

Formal Methods and Testing, volume 4949, pages 1�38. Springer-LNCS,

2008.

[55℄ J. Tretmans and H. Brinksma. Torx: Automated model-based testing. In

Pro
eedings of the First European Conferen
e on Model-Driven Software

Engineering, pages 31�43, 2003.

52

[56℄ Jan Tretmans. Test generation with inputs, outputs and repetitive quies-

en
e, 1996.

[57℄ Verimag. TGV, test generation with veri�
ation te
hnology, homepage,

http://www-verimag.imag.fr/tgv.html, August 2012.

[58℄ T. Wei-Tek, Y. Lian, Z. Feng, and R. Paul. Rapid embedded system testing

using veri�
ation patterns. Software, IEEE, 22(4):68�75, July-Aug 2005.

[59℄ M. Wu and Sony Ele
troni
s. Automated software testing environment,

2010.

[60℄ T. Yu. Testing embedded system appli
ations, 2010.

[61℄ Tingting Yu, Ahyoung Sung, W. Srisa-an, and G. Rothermel. Using

property-based ora
les when testing embedded system appli
ations. In

Software Testing, Veri�
ation and Validation (ICST), 2011 IEEE Fourth

International Conferen
e on, pages 100 �109, mar
h 2011.

53

